1. Toudehdehghan A., and Wai-Hong T.A., A Critical Review and Analysis of Pressure Vessel Structures, IOP Conf. Ser: Mater. Sci. Eng., 469, 012009, 2019.
2. Jegatheesan J. and Zakaria Z., Stress Analysis on Pressure Vessel, Environ. Ecosys. Sci. (ESS), 2, 53-57, 2018.
3. Paul R.J., The Development of Lightweight Composite Cylinders for Use in Demanding Structure Application, MS Thesis, The Mancheser University, School of Material, UK, 2011.
4. Khan M.I., Yasmin T., and Khan N.B., Safety Issues Associated with the Use and Operation of Natural Gas Vehicles: Learning from Accidents in Pakisan, J. Braz. Soc. Mech. Sci., 38, 2481-2497, 2015.
5. Eskandari Jam J. and Yaghoubi M.S., Introduction to the Design of Type II CNG Tanks (Persian), Malek Ashtar University of Technology, Tehran, 5-52, 2013.
6. Sloan J., The Markets: Pressure Vessels, https://www.compositesworld.com/articles/the-markets-pressure-vessels-2021, available in July 2021.
7. Kartav O., Design and Production of Light-Weight Pressure Resisant Composite Tank Materials and Sysems for
Hydrogen Storage, PQDT-Global, 2020.
8. Li M., Bai Y., Zhang C., Song Y., Jiang S., Grouset D., and Zhang M., Review on the Research of Hydrogen Storage
Sysem Fas Refueling in Fuel Cell Vehicle, Int. J. Hydrogen Energ., 44, 10677-10693, 2019.
9. Rajak D.K., Pagar D.D., Menezes P.L., and Linul E., Fiber-Reinforced Polymer Composites: Manufacturing, Properties,
and Applications, Polymers, 11, 1667-1704, 2019.
10. Woodruf J., Advantages and Disadvantages of Polymer Composites, https://homeseady.com/13653187/advantages-
disadvantages-of-polymer-composites.htm, available in November 2018.
11. Pasuszak P.D. and Muc A., Application of Composite Materials in Modern ConsructionS, Key. Eng. Mater., 542,
119-129, 2013.
12. Hsissoun R., Seghiri R., Benzekri Z., Hilali M., Rafk M., and Elharf A., Polymer Composite Materials: A Comprehensive
Review, Compos. Struct., 262, 113640, 2021.
13. Gasior P., Wachtarczyk K., Blachut A., Kaleta J., Yadav N., Ozga M., and Baron A., Validation of Selected Optical
Methods for Assessing Polyethylene (PE) Liners Used in High Pressure Vessels for Hydrogen Storage, Appl. Sci., 11, 5667,
2021.
14. Murry B.R., Characterization of Rotationally Moulded Polymer Liners For Low Permeability Cryogenic Applications
in Composite Overwrapped Pressure Vessels., PhD Thesis, National University of Ireland Galway, Galway, Ireland, 2016.
15. Polyethylene (PE)-Complete Guide, https://omnexus.specialchem.com/selection-guide/polyethylene-plasic, available
in 2021.
16. Spare S., Pareek K., and Vysa M., Invesigation of Satructural Stability of Type IV Compressed Hydrogen Storage Tank
During Refueling of Fuel Cell Vehicle, J. Energy Stor., 2, e150, 2020.
17. Villalonga S., Thomas C., Nony C., Thiebaud F., Geli M., Lucas A., Knobloch K., and Maugy C., Application of Full
Thermoplasic Composite for Type IV 70 MPa High Pressure Vessels, 18th International Conference on Composite
Materials (ICCM-18), Korea, 2011.
18. Barboza Neto E.S., Ceolho L.A.F., Forte M.M.C., Amico S.C., and Ferreira C.A., Processing of a LLDPE/HDPE Pressure
Vessel Liner by Rotomolding, J. Mater. Res., 17, 236-241, 2014.
19. Kunowsky M., Marco-lozar J.P., and Linares-Solano A., Material Demands for Storage Technologies in a Hydrogen
Economy, J. Renew. Energy, 2013, Article ID 878329, 2013.
20. Guo K., Wen L., Xiao J., Lei M., Wang S., Zhang C., and Hou X., Design of Winding Pattern of Filament Wound Composite Pressure Vessel with Unequal Openings Based on Non-Geodesics, J. Eng. Fiber. Fabr., 15, 1-17, 2020.
21. Clarich A., Wen Z., and Fratti G., Design Optimization, Cos and Risk Analysis of CNG Vessels Transportation, 14th
WCCM-ECCOMAS Congress (Virtual), 2021.
22. Seyedi S.M., Naddaf Oskouei A., and Sayah Badkhor M., Experimental, Numerical and Optimization Study of
Composite Tanks with Non-metallic Primer (CNG Fourth Type), Modares Mech. Eng. (Persian), 20, 1789-1800, 2020.
23. Heidari Rarani M., Ahmadi Jabeli M., and Baniasadi E., Burs Modeling of Type 4 High Pressure Storage Vessel (Persian),
The 5th International Conference on Composite, Tehran, 20-21 December, 2016.
24. Shelley D.A., Carbon Nanotube Reinforcement in Composite Cylinders, MS Thesis, Naval Posgraduate School Monterey, California, December 2020.
25. Berro Ramirez J.P., Halm D., Grandidier J.C., Villalonga S., and Nony F., 700 bar Type VI High Pressure Hydrogen
Storage Vessel Burs-Simulation and Experimental Validation, Int. J. Hydrogen Energ, 40, 13183-13192, 2015.
26. Shrigandhi G.D. and Kothavale B.S., Biodegradable Composites for Filament Winding Process, Mater. Today, 42,
2762-2768, 2021.
27. Fontana M.G., Corrosion Engineering, McGraw Hill, USA, 3rd ed., 15-80, 2005.
28. Momeni A. and Lotf Haghighat M., Invesigation of Typesof Corrosion and Its Causes in CNG Tanks, 4th CNG
International Conference and Exhibition, Tehran, 23-25 July, 2011.
29. Gas Cylinders-High Pressure Cylinders for the on Board Storage of Natural Gas as a Fuel for Automative Vehicles, ISO
11439:2013, 2nd ed., 2013.
30. Cho S.M., Kim D.E., Seong H.J., Ko Y.K., Kim H.C., Lee K.O., Jo M.S., and Lyu S.K., Development of a Type 4
Composite Cylinder for Self-Contained Breathing Apparatus, J. Korean Soc. Manuf. Process Eng., 18, 1-6, 2019.
31. Pressure Vessels for Alternative Fuels 2014-2023, https://www.compositesworld.com/articles/pressure-vessels-for-
alternative-fuels-2014-2023, available in December 2014.
32. Alizadeh E., Babaei J., Batalebluie R., and Behrooz H., Numerical and Experimental Study of Reinforced Composite
Vessels with Hoop Stifeners Under External Hydrosatic Pressure, J. Model. Eng., 16, 339-349, 2018.
33. Moon J.C., Kim I.H., Choi B.H., Kweon J.H., and Choi J.H., Buckling of Filament-Wound Composite Cylinders Subjected
to Hydrosatic Pressure for Underwater Vehicle Applications, Compos. Struct., 92, 2241-2251, 2010.
34. Su Y., Lv H., Zhou W., and Zhang C., Review of the Hydrogen Permeability of the Liner Material of Type IV On-Board Hydrogen Storage Tank, World Electr. Veh., 12, 130, 2021