1. Zhang X.D., Machine Learning, in a Matrix Algebra Ap pro ach to Artifcial Intelligence, Springer, USA, 223-440, 2020.
2. Roscher R., Bohn B., Duarte M.F., and Garcke J., Explain-able Machine Learning for Scientifc Insights and Discoveries,
IEEE Access, 8, 42200-42216, 2020.
3. Shmueli G., Data Mining for Business Analytics: Concepts, Techniques, and Applications in R, John Wiley & Sons, USA,
2017.
4. Molnar C., Interpretable Machine Learning, LeanPub, Cana da, 1-302, 2020.
5. Xiong H., Cheng Y., Zhao W., and Liu J., Analyzing Scientifc Research Topics in Manufacturing Field Using a Topic Model, Comput. Ind. Eng., 135, 333-347, 2019.
6. Sohrabi B., Vanani I.R., and Jalali S.M.J., Evaluation of Re search Trends in Knowledge Management: A Hybrid
Anal ysis Through Burs Detection and Text Clusering, J. In form. Knowl. Manag., 18, 19-43, 2019.
7. Fiser D., Mun J.C., Jagrič V., and Jagrič T., Deep Learn ing for Stock Market Trading: A Superior Trading Strategy, Neu ral.
Netw. World., 29, 151-171, 2019.
8. Wong K.H., Mason C.W., and Devaraj S., Low Tempera ture Aqueous Electrodeposited TiOx Thin Films as Electron
Ex traction Layer for Efcient Inverted Organic Solar Cells, ACS. Appl. Mater. Inter., 6, 2679-2685, 2014.
9. Huang Y., Zhang J., Jiang E.S., and Oya Y., Structure– Prop erty Correlation Study for Organic Photovoltaic Polymer
Ma terials Using Data Science Approach, J. Phys. Chem. C, 124, 12871–12882, 2020.
10. Yuan J., Zhang Y., Zhou L., Zhang G., Yip H.L., and Lau T.K., Single-Junction Organic Solar Cell With Over 15% Efciency
Using Fused-Ring Acceptor with Electron-Defcient Core, Joule, 3, 1140-1151, 2019.
11. Cui Y., Yao H., Hong L., Zhang T., Xu Y., and Xian K., Achieving Over 15% Efciency in Organic Photovoltaic Cells
Via Copolymer Design, Adv. Mater., 31, 18-36, 2019.
12. Gao K., Jo S., Shi X ., Nian L., Zhang M., and Kan Y., Over 12% Efciency Nonfullerene All-Small-Molecule Organic
Solar Cells with Sequentially Evolved Multilength Scale Mor phologies, Adv. Mater., 31, 18-28, 2019.
13. Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., and Liu F., High-Efciency Small-Molecule Ternary Solar Cells with a
Hierarchical Morphology Enabled by Synergizing Fuller ene and Non-Fullerene Acceptors, Nature Energ., 3, 952-959,
2018.
14. Fan B., Du X., Liu F., Zhong W., Ying L., Xie R., and Tang X., Fine-Tuning of the Chemical Structure of Photoactive
Materials for Highly Efcient Organic Photovoltaics, Nature En erg., 3, 1051-1058, 2018.
15. Liu J., Chen S., Qian D., Gautam B., Yang G., and Zhao J., Fas Charge Separation in a Non-Fullerene Organic Solar Cell
with a Small Driving Force, Nature Energ., 1, 1-7, 2016.
16. Bin H., Gao L., Zhang Z.G., Yang Y., and Zhang Y., 11.4% Ef ciency Non-Fullerene Polymer Solar Cells with
Tri al kyls ilyl Subsituted 2D-Conjugated Polymer as Donor, Nat. Com mun., 20, 1-11, 2019.
17. Wadsworth A., Moser M., Marks A., and Little M.S., Critical Review of the Molecular Design Progress in Non-Fullerene
Electron Acceptors Towards Commercially Viable Organic Solar Cells, Chem. Soc. Rev., 48, 1596-1625, 2019.
18. Graetzel M., Janssen R.A.J., Mitzi D.B., and Sargent E.H., Materials Interface Engineering for Solution-Processed
Pho tovoltaics, Nature, 488, 304-312, 2012.
19. Zhang G., Zhao J., Chow P.C.Y., Jiang K., and Zhang J., Non fullerene Acceptor Molecules for Bulk Heterojunction
Organic Solar Cells, Chem. Rev., 118, 3447-3507, 2018.
20. Li Y., Molecular Design of Photovoltaic Materials for Poly mer Solar Cells: Toward Suitable Electronic Energy Levels and
Broad Absorption, Accounts. Chem. Res., 45, 723-733, 2012.
21. Cheng P., Li G., Zhan X., and Yang Y., Next-Generation Or ganic Photovoltaics Based on Non-Fullerene Acceptors,
Nat. Photonics., 12, 131-142, 2018.
22. Lee M.H., Robus Random Fores Based Non-Fullerene Or ganic Solar Cells Efciency Prediction, Organ. Electron.,
76, 131-142, 2020.
23. Wu Y., Guo J., Sun R., and Min J., Machine Learning for Ac celerating the Discovery of High-Performance Donor/
Ac ceptor Pairs in Non-Fullerene Organic Solar Cells, npj Comput. Mater., 6, 1-8, 2020.
24. Lee M.H., Insights from Machine Learning Techniques for Predicting the Efciency of Fullerene Derivatives-Based
Ter nary Organic Solar Cells at Ternary Blend Design, ADV Energ. Mater., 9, 1-10, 2019.
25. Lin Y.C., Lu Y.J., Tsao C.S., Saeki A., and Li J.X., Enhancing Photovoltaic Performance by Tuning the Domain Sizes of a
Small-Molecule Acceptor by Side-Chain-Engineered Polymer Donors, J. Mater. Chem. A, 7, 3072-3082, 2019.
26. David T.W., Anizelli H., Jacobsson T.J., Gray C., and Teahan W., Enhancing the Stability of Organic Photovoltaics Through Machine Learning, Nano Energ., 78, 10-25, 2020.
27. Köntges W., Perkhun P., and Kammerer J., Visualiz ing Mor phological Principles for Efcient Photocurrent
Gen era tion in Organic Non-Fullerene Acceptor Blends,En erg. Environ. Sci., 13, 1259-1268, 2020.
28. Antono E., Matsuzawa N.N., Ling J., and Saal J.E., Machine-Learning Guided Quantum Chemical and Molecular Dynam ics Calculations to Design Novel Hole-Conducting Organic Ma terials, J. Phys. Chem. A, 124, 8330-8340, 2020.
29. Padula D., Simpson J.D., and Troisi A., Combining Electronic and Structural Features in Machine Learning Models to Pre dict Organic Solar Cells Properties, Mater. Horizons., 6, 343-349, 2019