مروری بر کاربرد پلیمرها به منظور کاهش پسار در خطوط لوله افقی

نوع مقاله : تالیفی

نویسندگان

1 گروه مهندسی شیمی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

2 - باشگاه پژوهشگران جوان و نخبگان، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران

چکیده

در سال‌های اخیر، با توجه به اهمیت انتقال سیالات توجه زیادی به مقدار مصرف انرژی در این زمینه شده است. بخش عمده‌ای از پژوهش­ها در این سال‌ها درباره کنترل مصرف انرژی و نیز بهینه‌سازی خطوط لوله انتقال انجام گرفته است. با کنترل کاهش‌ فشار که عمدتاً ناشی از افزایش اصطکاک و ضریب پسار است، می‌توان مصرف انرژی پمپ‌های انتقال‌دهنده سیالات را کاهش داده و ظرفیت خطوط لوله انتقال را افزایش داد. استفاده از مواد کاهنده‌ پسار از جمله مهم‌ترین و ساده‌ترین روش‌ها برای غلبه بر بخشی از تلفات انرژی به هنگام انتقال سیالات است. مواد کاهنده پسار شامل سطح­فعال­ها، پلیمرها، میکروحباب‌ها و غیره هستند. پلیمرها به عنوان مواد کاهنده‌ پسار کاربرد فراوانی دارند و استفاده از آن­ها راه‌حل سریع و مقرون به صرفه­ای برای ایجاد تغییرات در خطوط لوله انتقال است. این مواد با غلظت‌های بسیار کم می‌توانند نیروهای اصطکاک را به مقدار درخور توجهی در خطوط لوله کاهش دهند. استفاده از پلیمرهای کاهنده پسار جایگزین مناسبی برای افزایش ظرفیت خطوط لوله است. تزریق پلیمرهای کاهنده پسار در خطوط، افزون بر کاهش ‌فشار اصطکاکی سبب افزایش امنیت عملیاتی خطوط لوله، به­ویژه در لوله‌های فرسوده شده و به کاهش مصرف انرژی در پمپ‌ها منجر می‌شود. با توجه به ویژگی‌های قابل توجه پلیمرهای کاهنده‌ پسار در خطوط لوله‌ افقی، در این مطالعه کاربرد آن­ها در خطوط لوله بررسی شده است. همچنین، پارامترهای موثر بر کاهش نیروهای اصطکاک با استفاده از پلیمرهای کاهنده پسار مرور شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of the Application of Polymers to Drag Reduction in Horizontal Pipelines

نویسندگان [English]

  • Nadia Esfandiari 1
  • Reza Zareinezhad 2
1 Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
2 Young Researchers and Elite Club, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
چکیده [English]

In recent years, due to the importance of fluid transfer, much attention has been paid to the amount of energy consumption in this field. Much research has been done over the years on controlling energy consumption and optimizing transmission pipelines. By controlling the pressure drop, which is mainly due to increase friction and drag coefficient, the energy consumption of the fluid transfer pumps can be reduced and the capacity of the transmission pipelines can be increased. Using drag-reduction agents is one of the most important and simplest ways to overcome some of the energy losses during fluid transfer. Drag-reducing agents include surfactants, polymers, microbubbles, and so on. Polymers are widely used as drag-reducing material, and their usage is a fast and cost-effective solution for making changes in transmission pipelines. At very low concentrations, these materials can significantly reduce the frictional forces in pipelines. The use of drag-reducing polymers is a good alternative to increase the capacity of pipelines. Injection of drag-reducing polymers into the lines, in addition to reduce frictional pressure, increases the operational safety of pipelines, especially in worn-out pipes, and reduces energy consumption in pumps. Due to the remarkable properties of drag-reducing polymers in horizontal pipelines, their application in pipelines has been investigated in this study. Also, the parameters affecting the reduction of friction forces using drag-reducing polymers have been reviewed.

کلیدواژه‌ها [English]

  • polymer
  • drag reduction
  • pipelines
  • turbulent flow
  • polymer concentration
1. Sun B., Zhang Z., and Yang D., Improved Heat Transfer and Flow Resistance Achieved with Drag Reducing Cu Nanofluids
in the Horizontal Tube and Built-in Twisted Belt Tubes, Int. J. Heat Mass Transfer, 95, 69-82, 2016.
2. Stewart M., Surface Production Operations, Gulf Professional, Boston, 639-730, 2016.
3. Zhang W. and Li A., Resistance Reduction via Guide Vane in Dividing Manifold Systems with Parallel Pipe Arrays
(DMS- PPA) Based on Analysis of Energy Dissipation, Build. Environ., 139, 189-198, 2018.
4. Hong C.H., Choi H.J., Zhang K., Renou F., and Grisel M., Effect of Salt on Turbulent Drag Reduction of Xanthan Gum,
Carbohydr. Polym., 121, 342-347, 2015.
5. Tang L., Zeng Z., Wang G., Liu E., Li L., and Xue Q., Investigation on Superhydrophilic Surface with Porous
Structure: Drag Reduction or Drag Increasing, Surf. Coat. Technol., 317, 54-63, 2017.
6. Blatch N.S., Water Filtration at Washington, J. Eng. Mech., 57, 400-408, 1906.
7. Toms B., Some Observation on the Flow of Linear Polymer Solution through Straight Tube at Large Reynolds Numbers,
Proceedings of the First International Congress on Rheology, Amsterdam, 2, 135–141,1948.
8. Sokhal K.S., Gangacharyulu D., and Bulasara V.K., An Experimental Investigation of Heterogeneous Injection of
Biopolymer (Guar Gum) on the Flow Patterns and Drag Reduction Percentage for Two Phase (Water-Oil Mixture)
Flow, Exp. Therm. Fluid Sci., 102, 342-350, 2019.
9. Eshrati M., Al-Wahabi T., Al-Hashemi A.R., Al-Wahabi Y., Al-Ajmi A., and Abubakar A., Experimental Study of Drag
Reduction of Polymer-Polymer Mixtures in Horizontal Dispersed Oil-Water Flow, Exp. Therm. Fluid Sci., 83, 169-
176, 2017.
10. Khadom A.A. and Abdul-Hadi A.A., Performance of Polyacrylamide as Drag Reduction Polymer of Crude Petroleum
Flow, Ain Shams Eng. J., 5, 861-865, 2014.
11. Esfandiari N., Zareinezhad R., and Habibi Z., The Investigation and Optimization of Drag Reduction in Turbulent Flow of
Newtonian Fluid Passing through Horizontal Pipelines Using Functionalized Magnetic Nanophotocatalysts and Lecithin,
Chin J. Chem. Eng., 2019. doi:10.1016/j.cjche.2019.04.015
12. Wang X., Yao X., Hu G., and Chen P., Drag Reduction Performance of an Axial Oscillating Tool with Different Kinds
of Waveform using a Multiscale Friction Model, J. Petrol. Sci. Eng., 177, 135-153, 2019.
13. Abubakar A., Al-Hashemi A.R., Al-Wahabi T., Al-Wahabi Y., Al-Ajmi A., and Eshrati M., Parameters of Drag Reducing
Polymers and Drag Reduction Performance in Single-Phase Water Flow, Adv. Mech. Eng., 66, 1-8, 2014.
14. Zhang X., Duan X., and Muzychka Y., Degradation of Flow Drag Reduction with Polymer Additives-A New Molecular
View, J. Mol. Liq., 292, 111360, 2019. doi: 10.1016/ j.molliq.2019.111360
15. Ata Y., Baykal Y., and Gökçe M.C., Average Channel Capacity in Anisotropic Atmospheric Non-Kolmogorov
Turbulent Medium, Opt. Commun., 451, 129-135, 2019.
16. Pouranfard A.R., Mowla D., and Esmaeilzadeh F., An Experimental Study of Drag Reduction by Nanofluids through
Horizontal Pipe Turbulent Flow of a Newtonian Liquid, J. Ind. Eng. Chem., 20, 633-637, 2014.
17. Zhong K.,Yan C., Chen S., Zhang T., and Lou S., Aerodisk Effects on Drag Reduction for Hypersonic Blunt Body with
an Ellipsoid Nose, Aerosp. Sci. Technol., 86, 599-612, 2019.
18. Al-Sarkhi A., Effect of Mixing on Frictional Loss Reduction by Drag Reducing Polymer in Annular Horizontal Two-Phase
Flows, Int. J. Multiphase Flow, 39, 186-192, 2012.
19. Abubakar A., Al-Wahabi T., Al-Wahabi Y., Al-Hashemi A.R., and Al-Ajmi A., Roles of Drag Reducing Polymers in
Single- and Multi-Phase Flows, Chem. Eng. Res. Des., 92, 2153-2181, 2014.
20. Shi H., Ge W., Wang Y., Fang B., Huggins J.T., Russell T.A., Talmon Y., Hart D.J., and Zakin J.L., A Drag Reducing Surfactant Threadlike Micelle System with Unusual Rheolog ical Responses to pH, J. Colloid Interface Sci., 418, 95-102, 2014.
21. Gong W., Di Q.F., Wang X.L., Hua S., Zhang R.L., and Ye F., Seepage Model and Experiments of Drag Reduction by
Nanoparticle Adsorption, J. Hydrodyn. Ser. B, 25, 871-876, 2013.
22. Abubakar A., Al-Wahabi T., Al-Hashemi A.R., Al-Wahabi Y., Al-Ajmi A., and Eshrati M., Influence of Drag-Reducing
Polymer on Flow Patterns, Drag Reduction and Slip Velocity Ratio of Oil–Water Flow in Horizontal Pipe, Int. J. Multiphase
Flow, 73, 1-10, 2015.
23. Al-Yaari M., Al-Sarkhi A., Hussein I.A., and Sharkh B.A., Effect of Drag Reducing Polymers on Surfactant-Stabilized
Water–Oil Emulsions Flow, Exp. Therm. Fluid Sci., 51, 319- 331, 2013.
24. Yang S.Q. and Ding D., Drag Reduction Induced by Polymer in Turbulent Pipe Flows, Chem. Eng. Sci., 102, 200-208, 2013.
25. Shams R. and Shad S., Experimental Study of Two-Phase Oil–Polymer Flow in Horizontal Flow Path, Exp. Therm.
Fluid Sci., 100, 62-75, 2019.
26. Martin J.R. and Shapella B.D., The Effect of Solvent Solubility Parameter on Turbulent Flow Drag Reduction in
Polyisobutylene Solutions, Exp. Fluids, 34, 535-539, 2003.
27. McCormick C.L., Hester R.D., Morgan S.E., and Safieddine A.M., Water-Soluble Copolymers. 31. Effects of Molecular
Parameters, Solvation, and Polymer Associations on Drag Reduction Performance, Macromolecules, 23, 2132-2139,
1990.
28. Sifferman T.R. and Greenkorn R.A., Drag Reduction in Three Distinctly Different Fluid Systems, Soc. Pet. Eng. J., 21, 663-
669, 1981.
29. Reis L.G., Oliveira I.P., Pires R.V., and Lucas E.F., Influence of Structure and Composition of Poly(acrylamide-gpropylene
oxide) Copolymers on Drag Reduction of Aqueous Dispersions, Colloids Surf. A, 502, 121-129, 2016.