مروری بر اهمیت حسگرهای الکتروشیمیایی برپایه کیتوسان در صنایع غذایی

نوع مقاله : گزارش

نویسندگان

1 گروه علوم و مهندسی صنایع غذایی، رشت، دانشگاه گیلان، دانشکده کشاورزی،

2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه گیلان

چکیده

فناوری نانوحسگرهای الکتروشیمیایی و زیستی، ترکیبی چندرشته ای از علوم مختلف ازجمله زیست شیمی، زیست شناسی مولکولی، شیمی، فیزیک، الکترونیک و رایانه است. نانوحسگرها به عنوان ابزارهای کارآمد برای شناسایی مولکول های زیستی استفاده می شوند و در زمینه های مختلف ازجمله پزشکی، صنایع غذایی و تولید محصولات دارویی و بهداشتی به کار گرفته می شوند. کیتوسان، زیست پلیمری مشتق شده از کیتین است که غیرسمی، زیست سازگار، زیست فعال و زیست تخریب پذیر است. این زیست پلیمر دارای ویژگی های برجسته ای است و قابلیت تشکیل فیلم های باکیفیت را دارد که موجب به کارگیری گستردة آن در تولید زیست حسگرها شده است. در این بررسی، استفاده از کیتوسان به عنوان سکوی اصلاح سطح الکترود در حسگرهای الکتروشیمیایی ارزیابی شده است. مطالعات نشان می دهد، نانوذرات طلا، گرافن اکسید و نانولوله های کربن می توانند به عنوان مواد برجذبنده مؤثر برای این سکوی الکترودی عمل کنند و حساسیت، دقت و پایداری حسگرها را بهبود بخشند. استفاده از این سکوهای اصلاح شده برای تشخیص مولکول های مختلف مانند کافئین، گالیک اسید، ملامین و گلوکوز بررسی شده است. نتایج نشان می دهد، حسگرهای الکتروشیمیایی و زیستی برپایه کیتوسان می توانند به طور مؤثر در تشخیص سریع و دقیق آلاینده ها و خطرهای زیستی در چرخه غذا استفاده شوند. این فناوری ها از مزایایی مانند سرعت تشخیص، دقت، حساسیت زیاد و قابلیت بازاستفاده برخوردار هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of the Importance of Electrochemical Sensors Based on Chitosan in Food Industry

نویسندگان [English]

  • Zahra Akhlaghi 1
  • Abbas Abedfar 2
1 Department of Food Science & Technology, University of Guilan, P.O. Box. 41996-13776, Rasht, Iran
2 Department of Food Science & Technology, University of Guilan, Rasht, Iran.
چکیده [English]

 The technology of electrochemical and biological nanosensors is a multidisciplinary combination of different sciences including biochemistry, molecular biology, chemistry, physics, electronics and computing. Nanosensors are used as efficient tools to identify biological molecules and have applications in various fields, such as medicine, food industry, production of pharmaceutical and health products. Chitosan is a chitinderived biopolymer that is non-toxic, biocompatible, bioactive and biodegradable. This biopolymer has outstanding properties and has the ability to form high quality films, making it widely used in the manufacture of sensors and biosensors. In this review, the use of chitosan as a platform for electrode surface modification in electrochemical sensors has been evaluated. Studies have shown that gold nanoparticles, graphene oxide, and carbon nanotubes can act as effective adsorbent materials for this electrode platform and improve the sensitivity, accuracy and stability of the sensors. The use of these modified platforms has been investigated for the detection of different molecules such as caffeine, gallic acid, melamine, glucose, etc. The results show that chitosan-based electrochemical and biosensors can be effectively used in the rapid and accurate detection of contaminants and biohazards in the food cycle. These technologies have advantages such as detection speed, accuracy, high sensitivity and reusability.

کلیدواژه‌ها [English]

  • Nanosensor
  • Chitosan
  • Electrochemical sensor
  • Biosensor
  • Molecular imprinted polymer
  1. Karrat A., Lamaoui A., Amine A., Palacios-Santander J.M., and Cubillana-Aguilera L., Applications of Chitosan in Molecularly and Ion Imprinted Polymers, Chem. Afr., 3, 513-533, 2020.
  2. Qu B. and Luo Y., Chitosan-Based Hydrogel Beads: Preparations, Modifications and Applications in Food and Agriculture Sectors–A Review, Int. J. Biol. Macromol., 152, 437-448, 2020.
  3. No H., Meyers S.P., Prinyawiwatkul W., and Xu Z., Applications of Chitosan for Improvement of Quality and Shelf Life of Foods: A Review, J. Food Sci., 72, 87-100, 2007.
  4. Zhang M., Zhang F., Li C., An H., Wan T., and Zhang P., Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture, Polymers, 14, 958, 2022.
  5. Gamage A., Jayasinghe N., Thiviya P., Wasana M.D., Merah O., Madhujith T., and Koduru J.R., Recent Application Prospects of Chitosan Based Composites for the Metal Contaminated Wastewater Treatment, Polymers, 15,1453, 2023.
  1. Zhang W., Khan A., Ezati P., Priyadarshi R., Sani M.A., Rathod N.B., Goksen G., and Rhim J.W., Advances in Sustainable Food Packaging Applications of Chitosan/Polyvinyl Alcohol Blend Films, Food Chem., 443, 138506, 2024.
  2. Wang B., and Anslyn E.V., Chemosensors: Principles, Strategies, and Applications, John Wiley and Sons, New York, 429-453, 2011.
  3. Amirthalingam S. and Rangasamy J., Chitosan-Based Biosensor Fabrication and Biosensing Applications, Chitosan for Biomaterials III: Structure-Property Relationships, Springer, Germany, 233-255, 2021.
  4. Wan D., Yuan S., Li G., Neoh K., and Kang E., Glucose Biosensor from Covalent Immobilization of Chitosan-Coupled Carbon Nanotubes on Polyaniline-Modified Gold Electrode, ACS Appl. Mater. Interfaces, 2, 3083-3091, 2010.
  5. Serna Cock L., Zetty Arenas A.M., and Ayala Aponte A., Use of Enzymatic Biosensors as Quality Indices: A Synopsis of Present and Future Trends in The Food Industry, Chil. J. Agr. Res., 69, 270-280, 2009.
  6. Turner N.W., Subrahmanyam S., and Piletsky S.A., Analytical Methods for Determination of Mycotoxins: A Review, Anal. Chim. Acta, 632, 168-80, 2009.
  7. Kumar M.N.R., A Review of Chitin and Chitosan Applications, React. Funct. Polym., 46, 1-27, 2000.
  8. Trani A., Petrucci R., Marrosu G., Zane D., and Curulli A., Selective electrochemical Determination of Caffeine at a Gold-Chitosan Nanocomposite Sensor: May little Change on Nanocomposites Synthesis Affect Selectivity, J. Electroanal. Chem., 788, 99-106, 2007.
  9. Lou B.S., Rajaji U., Chen S.M., and Chen T.W., A Simple Sonochemical Assisted Synthesis of NiMoO4/Chitosan Nanocomposite for Electrochemical Sensing of Amlodipine in Pharmaceutical and Serum Samples, Ultrason. Sonochem., 64, 104827, 2020.
  1. Patrizia B., Othman A., Gupta M., Andriani G., Martin P., Kumar Y., Joly N., Sacco P., and Sufyan Javed M., Chitosan in Electrochemical (Bio)Sensors: Nanostructuring and Methods of Synthesis, Eur. Polym. J., 213, 113092, 2024.
  2. Hiremani V.D., Khanapure S., Gasti T., Goudar N., Vootla S.K., Masti S.P., Malabadi R.B., Mudigoudra B.S., and Chougale R.B., Preparation and Physicochemical Assessment of Bioactive Films Based on Chitosan and Starchy Powder of White Turmeric Rhizomes (Curcuma Zedoaria) for Green Packaging Applications, Int. J. Biol. Macromol., 193, 2192-2201, 2021.
  3. Kulka K. and Sionkowska A., Chitosan Based Materials in Cosmetic Applications: A Review, Molecules, 28, 1817, 2023.
  4. Karrat A. and Amine A., Recent Advances in Chitosan-Based Electrochemical Sensors and Biosensors, Arab. J. Chem. Environ. Res., 7, 66-93, 2020.
  5. Wang J. and Zhuang S., Chitosan-Based Materials: Preparation, Modification and Application. J. Clean. Prod., 355, 131825, 2022.
  6. Diouf A., Moufid M., Bouyahya D., Österlund L., El Bari N., and Bouchikhi B., An Electrochemical Sensor Based on Chitosan Capped with Gold Nanoparticles Combined with a voltammetric Electronic Tongue for Quantitative Aspirin Detection in Human Physiological Fluids and Tablets, Mater. Sci. Eng., 110, 110665, 2020.
  7. Lipińska W., Siuzdak K., Karczewski J., Dołęga A., and Grochowska K., Electrochemical glucose Sensor Based on the Glucose Oxidase Entrapped in Chitosan Immobilized onto Laser-Processed Au-Ti Electrode, Sens. Actuators B: Chem., 330, 129409, 2021.
  8. Askari H., Zeinali A., Parsa M., Kashanchi M., Azadi Gonbad R., Banaei A. et al., Evaluation of the Effect of Foliar Application of Nano-Chitosan and Mineral Nutrition (NPK) on the Catechins Content in Green Tea (Kashef Var.) Leaves Through Analysis of Some Biochemical, Physiological and Molecular Parameters, Iran. J. Med. Aromatic Plants Res., 40, 79-103, 2024.
  1. Feng N., Zhang J., and Li W., Chitosan/Graphene Oxide Nanocomposite-Based Electrochemical Sensor for ppb Level Detection Of Melamine, J. Electrochem. Soc., 166, 1364, 2019.
  2. Abdeltwab W.M., Abdelaliem Y.F., Metry W.A., and Eldeghedy M., Antimicrobial Effect of Chitosan and Nano-Chitosan Against Some Pathogens and Spoilage Microorganisms, J. Adv. Lab. Res. Biol., 10, 8-15, 2019.
  3. Souza V.G., Rodrigues C., Valente S., Pimenta C., Pires J.R., Alves M.M. et al., Eco-friendly ZnO/Chitosan Bionanocomposites Films for Packaging of fresh Poultry Meat, Coatings, 10, 110, 2020.
  4. Homayonpour P., Jalali H., Shariatifar N., and Amanlou M., Effects of Nano-Chitosan Coatings Incorporating with Free/Nano-Encapsulated Cumin (Cuminum Cyminum L.) Essential Oil on Quality Characteristics of Sardine Fillet, Int. J. Food Microbiol., 2, 341, 2021.
  5. Maleki G., Woltering E.J., and Mozafari M.R., Applications of Chitosan-Based Carrier as an Encapsulating Agent in Food Industry, Trends Food Sci. Technol., 120, 88-99, 2022.
  6. Su H., Huang C., Liu Y., Kong S., Wang J., Huang H., and Zhang B., Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities, Processes, 8, 834, 2020.
  7. Ahmed G.H.G., Fernandez-González A., and Garcia M.E.D., Nano-encapsulation of Grape and Apple Pomace Phenolic Extract in Chitosan and Soy Protein via Nanoemulsification, Food Hydrocoll., 108, 105806, 2020.