مروری کوتاه بر اثر نانوذرات سیلیکا بر بلورینگی نانوکامپوزیت‌های برپایه‌ پلی‌اتیلن پرچگالی

نوع مقاله : تالیفی

نویسندگان

1 بخش مهندسی شیمی، دانشکده نفت و مهندسی شیمی، دانشگاه رازی، کرمانشاه

2 کرمانشاه، دانشگاه رازی، دانشکده نفت و مهندسی شیمی، بخش مهندسی شیمی، صندوق پستی 14971-67144

چکیده

امروزه انواع پلی‌اتیلن پرمصرف‌ترین پلیمرهای گرمانرم به ­شمار می­ روند که در صنایع مختلف استفاده می ­شوند. پلی‌اتیلن به‌علت خواص منحصر به‌فرد آن مانند هزینه‌ به‌صرفه‌ تولید و فرایندپذیری بسیار خوب، کاربردهای متعدد یافته است. اما خواص مکانیکی ضعیف این پلیمر در مقایسه با فلزات موجب شده است تا اغلب برای بهبود آن از مواد افزودنی همچون نانوذرات مختلف بهره گرفته شود. بدین دلیل در سال‌های اخیر، توسعه‌ نانوکامپوزیت‌های مختلف برپایۀ پلی‌اتیلن اهمیت ویژه‌ای یافته است. از نانوذرات معمول در حوزه‌ نانوکامپوزیت‌های پلیمری سیلیکاست که ویژگی‌های خاص این دسته از نانوذرات از جمله دسترسی آسان، سمّیت کم و مساحت سطح و ثبات مولکولی زیاد، آن­ها را به‌عنوان گزینه‌ مناسبی برای تقویت خواص فیزیکی و مکانیکی پلیمرها مطرح کرده است. همچنین در برخی موارد، به­ منظور برطرف کردن مشکل پراکنش نامطلوب نانوذرات و تشکیل کلوخه، اصلاح سطح این مواد معدنی با روش‌های مختلف مورد توجه پژوهشگران قرار گرفته است. در مطالعات اخیر، استفاده از نانوذرات سیلیس خالص و اصلاح سطح ­شده در ماتریس گرمانرم، از جمله پلی­ اتیلن، برای بهبود خواص فیزیکی و مکانیکی پلیمر گزارش شده است. در این مقاله، اثر نانوذرات سیلیکای خالص و انواع اصلاح سطح­ شدۀ آن بر بلورینگی نانوکامپوزیت ­های برپایۀ انواع پلی‌اتیلن در مطالعات مختلف مرور شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Brief Review of the Effect of Silica Nanoparticles on the Crystallinity of HDPE-Based Nanocomposites

نویسندگان [English]

  • Saeideh Hojatzadeh 1
  • Farshad Rahimpour 2
  • Esmail Sharifzadeh 2
1 Chemical Engineering Department,, Faculty of Petroleum and Chemical Engineering, Razi University,, Kermanshah
2 Chemical Engineering Department, Faculty of Petroleum and Chemical Engineering, Razi
چکیده [English]

Today, one of the most widely used thermoplastic polymers in the world is polyethylene, which is used in various industries. Polyethylene has found many applications due to its unique properties such as low cost of production and very good processability. However, the weak mechanical properties of this polymer compared to metals have led to the use of additives such as various nanoparticles to improve it in most cases. For this reason, in recent years the development of various nanocomposites based on polyethylene has become important. Silica is the common nanoparticles in the field of polymer nanocomposites, which the special features such as easy access, low toxicity, and high surface area, and molecular stability have made this nanoparticle a suitable option for improvement the physical and mechanical properties of polymers. Also, in some cases, in order to solve the problem of the improper dispersion and agglomeration of these nanoparticles, the surface modification of these mineral materials by different methods has been the focus of researchers. In the recent studies, the use of pure and surface-modified silica nanoparticles in thermoplastic matrix, including polyethylene has been reported to improvement the physical and mechanical properties of the polymer. In this paper, the effect of pure silica nanoparticle and its surface-modified types on the crystallinity of nanocomposite based on various types of polyethylene has been reviewed.

کلیدواژه‌ها [English]

  • silica
  • surface modification
  • polyethylene
  • crystallinity
  • nanocomposite
  1. Benabid F., Kharchi N., Zouai F., Mourad A.-H.I., and Benachour D., Impact of Co-mixing Technique and Surface Modification of ZnO Nanoparticles Using Stearic Acid on their Dispersion into HDPE to Produce HDPE/ZnO Nanocomposites, Polym. Polym. Compos., 27, 389-399, 2019.
    2. Schirmeister C.G., Hees T., Licht E.H., and Muelhaupt R., 3D Printing of High Density Polyethylene by Fused Filament Fabrication, Addit. Manuf., 28, 152-159, 2019.
    3. Shelesh-Nezhad K., Orang H., and Motallebi M., The Effects of Adding Nano-Calcium Carbonate Particles on the Mechanical and Shrinkage Characteristics and Molding Process Consistency of PP/Nano-CaCO3 Nanocomposites, In: Polypropylene, IntechOpen, Croatia, 357-367, 2012.
    4. Singh V., Joung D., Zhai L., Das S., Khondaker S.I., and Seal S., Graphene Based Materials: Past, Present and Future, Prog. Mater. Sci., 56, 1178-1271, 2011.
    5. Guadagno L., Naddeo C., Raimondo M., Barra G., Vertuccio L., Russo S., et al., Influence of Carbon Nanoparticles/Epoxy Matrix Interaction on Mechanical, Electrical and Transport Properties of Structural Advanced Materials, Nanotechnology, 28, 094001, 2017.
    6. Reda H., Chazirakis A., Behbahani A.F., Savva N., and Harmandaris V., Mechanical Properties of Glassy Polymer Nanocomposites via Atomistic and Continuum Models: The Role of Interphases, Comput. Methods Appl. Mech. Eng., 395, 114905, 2022.
    7. Rahimi Mir-Azizi Z., Sharifzadeh E., and Rahimpour F., Thermal Analysis of ZnO/Hollow Graphene-Oxide/Polyester
    Complex- and Simple-Structure Nanocomposites: Analytical, Simulation and Experimental Approaches, Iran. Polym. J., 31, 717-727, 2022.
    8. Chen X., Bao R., Yi J., Fang D., Tao J., and Li F., Enhancing Mechanical Properties of Pure Copper-Based Materials with CrXOY Nanoparticles and CNT Hybrid Reinforcement, J. Mater. Sci., 56, 3062-3077, 2021.
    9. Guo J., Xu C., Yang B., Li H., and Wu G., The Size Effect of Silver Nanoparticles on Reinforcing the Mechanical Properties of Regenerated Fibers, Molecules, 28, 1750, 2023.
    10. Yang Z., Peng H., Wang W., and Liu T., Crystallization Behavior of Poly(ε‐caprolactone)/Layered Double Hydroxide Nanocomposites, J. Appl. Polym. Sci., 116, 2658-2667, 2010.
    11. Zhang M.C., Guo B.-H., and Xu J., A Review on Polymer Crystallization Theories, Crystals, 7, 4, 2016.
    12. Sangroniz L., van Drongelen M., Cardinaels R., Santamaria A., Peters G.W., and Müller A.J., Effect of Shear Rate and Pressure on the Crystallization of PP Nanocomposites and PP/PET Polymer Blend Nanocomposites, Polymer, 186, 121950, 2020.
    13. Zuo B., Li W., Wu X., Wang S., Deng Q., and Huang M., Recent Advances in the Synthesis, Surface Modifications
    and Applications of Core‐Shell Magnetic Mesoporous Silica Nanospheres, Chem. Asian J., 15, 1248-1265, 2020.
    14. Klabunde K.J. and Richards R.M., Nanoscale Materials in Chemistry, John Wiley & Sons, New York, 41-42, 2009.
    15. Reverchon E. and Adami R., Nanomaterials and Supercritical Fluids, J. Supercrit. Fluids, 37, 1-22, 2006.
    16. Kang H., Lee J., O’Keefe T., Tuga B., Hogan Jr C.J., and Haynes C.L., Effect of (3-Aminopropyl)triethoxysilane on
    Dissolution of Silica Nanoparticles Synthesized via Reverse Micro Emulsion, Nanoscale, 14, 9021-9030, 2022.
    17. Liu S. and Han M.Y., Silica‐Coated Metal Nanoparticles, Chem. Asian J., 5, 36-45, 2010.
    18. Hwang J., Lee J.H., and Chun J., Facile Approach for the Synthesis of Spherical Mesoporous Silica Nanoparticles from Sodium Silicate, Mater. Lett., 283, 128765, 2021.
    19. Sumathi R. and Thenmozhi R., Preparation of Spherical Silica Nanoparticles by Sol-Gel Method, International Conference on Systems, Science, Control, Communication, Engineering and Technology, 401-405, 10 March, 2016.
  2. Ibrahim I.A., Zikry A., and Sharaf M.A., Preparation of Spherical Silica Nanoparticles: Stober Silica, J. Am. Sci., 6, 985-989, 2010.
    21. Van Blaaderen A., van Geest J., and Vrij A., Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle
    Formation and Growth Mechanism, J. Colloid Interface Sci., 154, 481-501, 1992.
    22. Ma X.-k., Lee N.-H., Oh H.-J., Kim J.-W., Rhee C.-K., Park K.-S., and Kim S.-J., Surface Modification and Characterization of Highly Dispersed Silica Nanoparticles by a Cationic Surfactant, Colloids Surf. A Physicochem. Eng. Asp., 358, 172-176, 2010.
    23. Li Y., Han B., Liu L., Zhang F., Zhang L., Wen S., Lu Y. et al., Surface Modification of Silica by Two-Step Method and Properties of Solution Styrene Butadiene Rubber (SSBR) Nanocomposites Filled with Modified Silica, Compos. Sci. Technol., 88, 69-75, 2013.
    24. Chrissafis K., Paraskevopoulos K., Pavlidou E., and Bikiaris D., Thermal Degradation Mechanism of HDPE Nanocomposites Containing Fumed Silica Nanoparticles, Thermochim. Acta, 485, 65-71, 2009.
    25. Jeziorska R., Szadkowska A., Zielecka M., Wenda M., and Kepska B., Morphology and Thermal Properties of HDPE
    Nanocomposites: Effect of Spherical Silica Surface Modification and Compatibilizer, Polym. Degrad. Stab., 145, 70-78, 2017.
    26. Grigoriadou I., Paraskevopoulos K., Chrissafis K., Pavlidou E., Stamkopoulos T.-G., and Bikiaris D., Effect of Different Nanoparticles on HDPE UV Stability, Polym. Degrad. Stab., 96, 151-163, 2011.
    27. Jeziórska R., Zielecka M., Gutarowska B., and Żakowska Z., High-Density Polyethylene Composites Filled with Nanosilica Containing Immobilized Nanosilver or Nanocopper: Thermal, Mechanical, and Bactericidal Properties and Morphology and Interphase Characterization, Int. J. Polym. Sci., 2014, 2014.
    28. Pavoski G., Kalikoski R., Souza G., Brum L.F.W., Dos Santos C., Markeb A.A., Dos Santos J.H.Z., et al., Synthesis of Polyethylene/Silica-Silver Nanocomposites with Antibacterial Properties by in Situ Polymerization, Eur. Polym. J., 106, 92-101, 2018.
    29. Zhang Y., Yu J., Zhou C., Chen L., and Hu Z., Preparation, Morphology, and Adhesive and Mechanical Properties of Ultrahigh‐Molecular Weight Polyethylene/SiO2 Nanocomposite Fibers, Polym. Compos., 31, 684-690, 2010.
    30. Hojatzadeh S., Rahimpour F., and Sharifzadeh E., A Study on the Synergetic Effects of Self/Induced Crystallization and Nanoparticles on the Mechanical Properties of Semi-Crystalline Polymer Nanocomposites: Experimental and Analytical Approaches, Iran. Polym. J., 32, 543-555, 2023.