شیمی و فناوری پلیمرهای پیشرفته: 1- مروری بر روش‌‌های تهیه، خواص و کاربرد‌های الیاف ابریشم عنکبوت طبیعی

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی پلیمر و رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 استادیار شیمی پلیمر/ دانشگاه تحصیلات تکمیلی علوم پایه زنجان

چکیده

ابریشم دسته‌ای از الیاف طبیعی بوده که توسط برخی از حشرات خاص تولید می‌شود. عنکبوت‌‌ها درشت ­مولکول‌‌های پروتئینی با ساختار‌های مولکولی مختلف برای کاربرد‌های گوناگون تولید می‌کنند. تار‌‌های عنکبوت یا سایر ساختار‌های بزرگ پروتئینی با خروج رشته­‌های پروتئینی از غده‌‌های ریسنده درون بدن عنکبوت تولید می‌شوند که این غدد مانند یک دستگاه ریسندگی عمل می‌کنند. ابریشم طبیعی عنکبوت در مقایسه با سایر الیاف طبیعی و مصنوعی به ­دلیل خواص مکانیکی و فیزیکی منحصربه ­فرد آن مورد توجه زیادی قرار گرفته است. این خواص استثنایی به کاربرد‌های بالقوه الیاف ابریشم عنکبوت برای استفاده در تولید جلیقه ضدگلوله، عروق مصنوعی، حسگر‌ها و غیره منجر شده است. خواص مکانیکی و فیزیکی شیمیایی درخور توجه این الیاف ناشی از ساختار مولکولی درشت­ مولکول­‌های پروتئینی و همچنین برهم­کنش­‌های فیزیکی بین زنجیر‌های پروتئینی است. از سوی دیگر، سازوکار‌‌های ویژه تولید تار‌های عنکبوت مانند فرایند‌های اعمال تنش، تنظیم pH، تبادل یون و درنهایت خروج از تارریس‌‌ها از دلایل خواص فوق­ العاده این الیاف است. به­ دلیل مشکلات درخور توجه در تولید طبیعی الیاف ابریشم توسط عنکبوت­‌ها، تولید ابریشم عنکبوت در مقیاس بزرگ نیازمند روش­‌های پیشرفته مانند قراردادن DNA عنکبوت در حیوانات و باکتری­‌هاست. یادآور می ­شود، الیاف ابریشم عنکبوت تولیدشده با این روش‌‌ها، خواص مکانیکی و فیزیکی کاملاً مشابه ابریشم طبیعی عنکبوت را نداشته‌اند. الیاف ابریشم عنکبوت دارای کاربرد‌های بالقوه ­ای در صنایع پزشکی و نظا‌می ‌بوده که این مطالعه ‌می‌تواند دریچه جدیدی را به آینده این الیاف باز کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemistry and Technology of Advanced Polymers: A Review on Preparation Methods, Properties and Advanced Applications of Natural Spider Silk Fibers

نویسندگان [English]

  • Seyed Farzan Tajbakhsh 1
  • Amin Abdollahi 2
1 Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
2 Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, Iran
چکیده [English]

Silk is a natural fiber composed of proteins produced by some insects. Spiders produce protein macromolecules with different molecular structures for different applications. Spider web or other large protein structures are produced by the release of protein fibers from the spinning glands inside the spider's body, which act as a spinning instrument. Spider natural silk has received a lot of attention, due to its unique mechanical and physical properties, thermal resistance, biocompatibility, and biodegradability. These exceptional properties have led to the potential applications of spider silk fibers in production of bulletproof vest, artificial vessels, sensors, and etc. This interesting mechanical and physicochemical properties are due to the macromolecular structure of protein molecules as well as physical interactions between protein chains. derived from protein macromolecule’s structure, including the large protein sequences of the repeating units as well as physical interactions between protein chains and specific mechanisms such as tension, pH adjusting, and ion exchange in spinnerets of spider. Due to the remarkable difficulties in natural production of spider silk, other advanced techniques like inserting spider DNA in animals or bacteria is employed, but fibers produced by these methods do not have mechanical and physicochemical properties of natural spider silk lower molecular weight of the protein chains. Spider silk fibers have potential applications in pharmaceutical and military industries and this study can open a new window to the future of these fibers.

کلیدواژه‌ها [English]

  • spider
  • silk
  • natural fibers
  • spinning
  • protein
1.  Agnarsson I., Kuntner M., and Sudhikumar A.V., Bioprospect-ing Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider, PLoS ONE, 5, 11234, 2010.
2.  Mohanan Drisya-Mohan O., Kavyamol P., Plaza G., and Guinea G.V., Effect of Kleptoparasitic Ants on the Foraging Be-
havior of a Social Spider (Stegodyphus sarasinorum Karsch, 1891), Zool. Stud., 58, e3, 2019.
3.  Spiess K., Lammel A., and Scheibel T., Recombinant Spider Silk Proteins for Applications in Biomaterials, Macromol. 
Biosci., 10, 998-1007, 2010.
4.  Sutherland T.D., Young J.H., Weisman S., Hayashi C.Y., and Merritt D.J., Insect Silk: One Name, Many Materials, Annu. 
Rev. Entomol., 55, 171-188, 2010.
5.  Eisoldt L., Smith A., and Scheibel T., Decoding the Secrets of Spider Silk, Mater. Today, 14, 80-86, 2011.
6.  Gu Y., Yu L., Mou J., Wu D., Zhou P., and Xu M., Mechani-cal Properties and Application Analysis of Spider Silk Bionic   
Material, E-Polymers, 20, 443-457, 2020.
7.  Pechmann M., Khadjeh S., Sprenger F., and Prpic N.M.,   Patterning Mechanisms and Morphological Diversity of   
Spider Appendages and their Importance for Spider Evolution,   Arthropod. Struct. Dev., 39, 453-467, 2010.
8.  Belbéoch C., Lejeune J., Vroman P., and Salaün F., Silkworm and Spider Silk Electrospinning: A Review, Environ. Chem. 
Lett., 19, 1737-1763, 2021.
9.  Pan L., Wang F., Cheng Y., Leow W.R., Zhang Y.W., Wang M. et al., A Supertough Electro-Tendon Based on Spider Silk 
Composites, Nat. Commun., 11, 1332, 2020.
10. Yarger J.L., Cherry B.R., and van der Vaart A., Uncovering the Structure–Function Relationship in Spider Silk, Nat. Rev. 
Mater., 3, 18008, 2018.
11. Dastagir K., Dastagir N., Limbourg A., Reimers K., Strauß S., and Vogt P.M., In Vitro Construction of Artificial Blood   
Vessels Using Spider Silk as a Supporting Matrix,  J. Mech. Behav. Biomed. Mater., 101, 103436, 2020.
12. Franco A.R., Fernandes E.M., Rodrigues M.T., Rodrigues F.J., Gomes M.E., Leonor I.B. et al., Antimicrobial Coating o
Spider Silk to Prevent Bacterial Attachment on Silk SurgicaSutures, Acta Biomater., 99, 236-246, 2019.
13. Liu X., Shi L., Wan X., Dai B., Yang M., Gu Z. et al., A SpiderSilk-Inspired Wet Adhesive with Supercold Tolerance,  Adv
Mater., 33, 2007301, 2021.
14. Blamires S.J., Blackledge T.A., and Tso I.M., Physicochemical Property Variation in Spider Silk: Ecology, Evolution
and Synthetic Production, Annu. Rev. Entomol., 62, 443-4602017.
15. Kiseleva A.P., Krivoshapkin P.V., and Krivoshapkina E.FRecent Advances in Development of Functional Spider Silk
Based Hybrid Materials, Front. Chem., 8, 2020.
16. Wang Z., Cang Y., Kremer F., Thomas E.L., and Fytas G., Determination of the Complete Elasticity of Nephila pilipes
Spider Silk, Biomacromolecules, 21, 1179-1185, 2020.
17. Whittall D.R., Baker K.V., Breitling R., and Takano E., HostSystems for the Production of Recombinant Spider Silk, 
Trends. Biotechnol., 39, 560-573, 2021.
18. Babb P.L., Lahens N.F., Correa-Garhwal S.M., Nicholson D.N., Kim E.J., Hogenesch J.B. et al., The Nephila Clavipe
Genome Highlights the Diversity of Spider Silk Genes and their Complex Expression, Nat. Genet., 49, 895-903, 2017.
19. Hagn F., Eisoldt L., Hardy J.G., Vendrely C., Coles M., Scheibel T. et al., A Conserved Spider Silk Domain Acts as 
Molecular Switch that Controls Fibre Assembly, Nature, 465239-242, 2010.
20. Gu L., Jiang Y., and Hu J., Scalable Spider-Silk-Like Supertough Fibers Using a Pseudoprotein Polymer, Adv. Mater., 31
1904311, 2019.
21. Salehi S., Koeck K., and Scheibel T., Spider Silk for TissuEngineering Applications, Molecules, 25, 737, 2020.
22. DeSimone E., Schacht K., Pellert A., and Scheibel T., Recombinant Spider Silk-Based Bioinks, Biofabrication, 9, 044104
2017.
23. Bakhshandeh B., Nateghi S.S., Gazani M.M., Dehghani Z.,and Mohammadzadeh F., A Review on Advances in the Ap-plications of Spider Silk in Biomedical Issues,  Int. J. Biol. Macromol., 192, 258-271, 2021.
24. Florczak A., Jastrzebska K., Mackiewicz A., and Dams- Kozlowska H., Blending Two Bioengineered Spider Silks to   
Develop Cancer Targeting Spheres,  J. Mater. Chem. B,  5, 3000-3011, 2017.
25. Hey Tow K., Chow D.M., Vollrath F., Dicaire I., Gheysens T., and Thévenaz L., Exploring the Use of Native Spider Silk as 
an Optical Fiber for Chemical Sensing, J. Light. Technol., 36, 1138-1144, 2018.
26. Cohen N., Levin M., and Eisenbach C.D., On the Origin of Supercontraction in Spider Silk, Biomacromolecules, 22, 993-
1000, 2021.
27. Kiseleva A., Kiselev G., Kessler V., Seisenbaeva G., Gets D., Rumyantseva V. et al., Optically Active Hybrid Materials 
based on Natural Spider Silk, ACS Appl. Mater. Interfaces., 11, 22962-22972, 2019.
28. Pant H.R., Bajgai M.P., Nam K.T., Seo Y.A., Pandeya D.R., Hong S.T. et al., Electrospun Nylon-6 Spider-Net Like Nano-
fiber Mat Containing TiO2 Nanoparticles: A Multifunctional Nanocomposite Textile Material, J. Hazard. Mater., 185, 124-
130, 2011.
29. Liu Z., Zhang M., Zhang Y., Xu Y., Zhang Y., Yang X. et al., Spider Silk-Based Tapered Optical Fiber for Humidity Sensing based on Multimode Interference, Sens. Actuator A Phys., 313, 112179, 2020.
30. Miniaci M., Krushynska A., Movchan A.B., Bosia F., and Pug-no N.M., Spider Web-Inspired Acoustic Metamaterials, Appl. Phys. Lett., 109, 071905, 2016.
31. Zhou J. and Miles R.N., Sensing Fluctuating Airflow with   Spider Silk, Proc. Natl. Acad. Sci., 114, 12120-12125, 2017.
32. Kumari S., Bargel H., and Scheibel T., Recombinant Spider Silk-Silica Hybrid Scaffolds with Drug-Releasing Properties 
for Tissue Engineering Applications, Macromol. Rapid. Com-mun., 41, 1900426, 2020.
33. Müller F., Zainuddin S., and Scheibel T., Roll-to-Roll   Production of Spider Silk Nanofiber Nonwoven Meshes   
Using Centrifugal Electrospinning for Filtration Applications,   Molecules, 25, 5540, 2020