رزین‌های قابل شبکه‌ای‌شدن نوری برای کاربردهای چاپ سه‌بعدی

نوع مقاله : تالیفی

نویسندگان

1 دانشجو/ دانشگاه اصفهان

2 زنجان، دانشگاه زنجان، دانشکده شیمی، کد پستی3879145371

چکیده

چاپ سه ­بعدی فرایندی است که طی آن اجسام سه­ بعدی با افزودن لایه­ های متوالی مواد (مانند پلیمرها) روی هم ساخته می­ شوند. در حال حاضر، این فرایند از مهم­ترین زمینه­ های پژوهشی در مراکز  پژوهشی دانشگاهی و صنعتی به ­شمار می­رود. در میان رویکردهای مختلف برای چاپ سه ­بعدی، پلیمرشدن نوری به ­دلیل گستره­ وسیع مونومرها-اولیگومرهای قابل پلیمرشدن نوری (نورپلیمرها) بسیار مورد توجه قرار گرفته است. در این روش، دو جزء آغازگرهای نوری و مونومرها-اولیگومرها مهم­ترین اجزا برای چاپ سه ­بعدی هستند که نه تنها امکان چاپ رزین، بلکه بر خواص کاربردی قطعه مانند استحکام مکانیکی، دقت ابعادی، شفافیت، مدول و سایر موارد اثرگذارند. در این مقاله­، مهم­ترین دسته از نورپلیمرهای استفاده ­شده در فرایند چاپ سه­ بعدی از نقطه ­نظر شیمی واکنش و مزایا و معایب آن­ها مرور می­ شود. بدیهی است طراحی و ساخت رزین­ های ­پخت­ پذیر نوری نیازمند داشتن دانش درباره انواع رزین ­های موجود و چالش­ های مرتبط به آن است. از این رو، این مقاله می­ تواند منبع مناسبی برای پژوهشگران فعال در این زمینه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Photocrosslinkable Resins for 3D Printing Applications

نویسندگان [English]

  • Mehdi Sheikhi 1
  • shaghayegh vakili 2
1 PhD candidate/ University of Isfahan
2 Polymer Chemistry Research Laboratory, Department of Chemistry, University of Zanjan, Zanjan, 45195‐313, Islamic Republic of Iran
چکیده [English]

Three dimensional printing (3D) is a process of fabricating 3D objects through depositing layers of materials (such as polymers) on previous layers. Currently is considered one of the most important research fields in academic and industrial research centers. Among the various approaches to 3D printing, photopolymerization is of great interest due to the wide range of monomers/oligomers prone to photopolymerization reactions (photopolymers). Photoinitiators and monomers/oligomers are two important components of resins applied for 3D process, which affect not only the possibility of resin printing, but also the functional properties of the part such as mechanical strength, dimensional accuracy, transparency, modulus and others. In this article, the most important group of photopolymers used in the 3D printing process is reviewed from the point of view of reaction chemistry and their advantages and disadvantages. It is obvious that the design and manufacture of photocurable resins requires knowledge about the types of resins available and the challenges associated with them. Therefore, this article can be a good source for active researchers in this field.

کلیدواژه‌ها [English]

  • 3D printing
  • resin
  • photopolymer
  • acrylate
  • epoxy
1.  Kumar P., Rajak D.K., Abubakar M., Ali S.G.M., and Hussain M., 3D  Printing  Technology  for  Biomedical  Practice: A 
Review, J.  Mater. Eng. Perform., 30, 5342-5355, 2021.
2.  Korium M. and  Heikki H.,  Development of a Metal 3D Printing Process for Jewelry Production Utilizing Titanium, 
MSc Thesis, Finland, LUT University, June 2019.
3.  Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., and Rupp F., Carbon Fiber Reinforced PEEK Composites 
Based on 3D-Printing Technology for Orthopedic and Dental Applications,  J. Clin. Med.,  8, 240, 2019.
4.  Jagadiswaran B., Alagarasan V., Palanivelu P., Theagarajan R., Moses J.A., and Anandharamakrishnan C., Valorization 
of Food Industry Waste and By-Products Using 3D Printing: A Study on the Development of Value-Added Functional 
Cookies, Future Food.,  4, 100036, 2021.   
5.  Kotta S., Nai A., and Alsabeelah N., 3D Printing Technology in  Drug  Delivery  :Recent  Progress  and  Application,  Curr. Pharm.  Des.,  24, 5039-5048, 2018.
6.  Zamborsky R., Kilian M., Jacko P., Bernadic M., and Hudak R., Perspectives of 3D Printing Technology in Orthopaedic 
Surgery, Bratisl. Lek. Listy, 120,  498-504,  2019  .
7.  Pavan Kalyan B.G. and Kumar L., 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery, 
AAPS PharmSciTech,  23, 1-20, 2022.
8.  Layani M., Wang X., and Magdassi S., Novel Materials for 3D Printing by Photopolymerization, J. Adv. Mater., 30, 1706344, 2018  .
9.  Fu J., Yin H., Yu X., Xie C., Jiang H., Jin Y. et al., Combination of 3D Printing Technologies and Compressed Tablets for 
Preparation of Riboflavin Floating Tablet-in-Device (TiD) Systems,  Int. J. Pharm., 549, 370-379, 2018.
10. Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., and Long T.E., Polymer Structure-Property Requirements for Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds, Biomaterials,  140, 170-188, 2017.
11. Mao Y., Yu K., Isakov M.S., Wu J., Dunn M.L., and Jerry Q.-H., Sequential Self-Folding Structures by 3D Printed Digital 
Shape Memory Polymers, Sci. Rep., 5, 1-12, 2015.
12. Ligon S.C., Liska R., Stampfl J., Gurr M., and Mülhaupt R., Polymers for 3D Printing and Customized Additive 
Manufacturing,  Chem. Rev.,  117, 10212-10290, 2017.
13. Zirak N., Shirinbayan M., Benfriha K., Deligant M., and Tcharkhtchi A., Stereolithography of (Meth)Acrylate‐based 
Photocurable Resin: Thermal and Mechanical Properties, J. Appl. Polym. Sci.,  139, 52248, 2022.
14. Pala N.B., Mangadlao J.D., de Leon A.C.C., Palaganas J.O., Pangilinan K.D., Lee Y.J. et al., 3D Printing of Photocurable 
Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography,  ACS Appl. Mater. 
Interfaces,  9, 34314-34324, 2017.
15. Murphy E.J., Ansel R.E., and Krajewski J.J, Method of Forming a Three-Dimensional Object by Stereolithography and 
Composition Therefore,  US Pat. 4,942,001, 1990.
16. Hull C.W., Spence S.T., Lewis C.W., Vinson W., Freed R.S., and Smalley D.R., Stereolithographic Curl reduction, US Pat. 
5,772,947, 1998.
17. Ueda, M., Takase K., and Kurosawa T., Stereolithography Resin Compositions and Three-Dimensional Objects Made 
Therefrom,  US Pat. 12/531,948, 2010.
18. Steinmann B., Wolf J.P., Schulthess A., and Hunziker M., Photosensitive Compositions, US Pat. 5,476,748, 1995.
19. Kim L.U., Kim J.W., and Kim C.K., Effects of Molecular Structure of the Resins on the Volumetric Shrinkage and 
the Mechanical Strength of Dental Restorative Composites, Biomacromolecules, 7, 2680-2687, 2006.
20. McNair O.D., Janisse A.P., Krzeminski D.E., Brent D.E., Gould T.E., Rawlins J.W. et al., Impact Properties of Thiol-
Ene Networks, ACS Appl. Mater. Interfaces, 5, 11004-11013, 2013.
21. Qin X.H., Gruber P., Markovic M., Plochberger B., Klotzsch E., Stampfl J. et al., Enzymatic Synthesis of Hyaluronic Acid Vinyl Esters for Two-Photon MicroFabrication of Biocompatible 
and Biodegradable Hydrogel Constructs, Polym. Chem., 5, 6523-6533, 2014.
22. Senyurt A.F., Wei H., Phillips B., Cole M., Nazarenko S., Hoyle C.E. et al., Physical and Mechanical Properties of 
Photopolymerized Thiol−Ene/Acrylates, Macromolecules, 39, 6315-6317,   2006.
23. Ligon S.C., Husar B., Wutzel H., Holman R., and Liska R., Strategies to Reduce Oxygen Inhibition in Photoinduced 
Polymerization,  Chem. Rev.,  114, 557-589, 2013.
24. Dias A.J.A.A., Houben E.J.E., Steeman P.A.M., and Wei H., Radiation Curable ThiolEne Composition, Eur. Pat. 1477511A1, 2004.
25. Patel R., Rhodes M., and Zhao Y., Photocurable Compositions, US Pat. 8,097,399, 2012.
26. Ahmed K., Naga N., Kawakami M., and Furukawa H., Extremely Soft, Conductive, and Transparent Ionic Gels by 
3D Optical Printing, Macromol. Chem. Phys, 1800216, 2018.
27. Joshi M.P., Pudavar H.E., Swiatkiewicz J., Prasad P.N., and Reianhardt B.A., Three-Dimensional Optical Circuitry Using 
Two-Photon-Assisted Polymerization,  Appl. Phys. Lett.,  74, 170-172, 1999.
28. Zhang J. and Xiao P., 3D Printing of Photopolymers, Polym. Chem.,  9, 1530-1540, 2018.
29. Berglund G.D. and Tkaczyk T.S., Enabling Consumer-Grade 3D-Printed Optical Instruments-A Case Study on Design and Fabrication of a Spectrometer System Using Low-Cost 3D Printing Technologies, Opt. Contin., 1, 516-526, 2022.
30. Park H.Y., Kloxin C.J., Scott T.F., and Bowman C.N., Stress Relaxation by Addition-Fragmentation Chain Transfer in 
Highly Cross-Linked Thiol-yne Networks, Macromolecules, 43, 10188-10190, 2010.
31. Crivello J.V., The Discovery and Development of Onium Salt Cationic Photoinitiators, J. Polym. Sci. Part A: Polym. Chem., 37, 4241-4254, 1999.
32. Crivello J.V. and Dietliker K., Photoinitiators for Free Radical Cationic and Anionic Photopolymerisation, John Wiley and Sons, Chichester, 1998. 
33. Lapin S.C., Snyder J.R., Sitzmann E.V., Barnes D.K., and Green G.D., Stereolithography Using Vinyl Ether-Epoxide Polymers, US Pat. 5,437,964, 1995.
34. Al Mousawi A., Dumur F., Garra P., Toufaily J., Hamieh T., Goubard F. et al., Azahelicenes as Visible Light Photoinitiators for Cationic and Radical Polymerization: Preparation of Photoluminescent Polymers and Use in High Performance 
LED Projector 3D Printing Resins,  J. Polym. Sci. Part A: Polym. Chem.,  55, 1189-1199,  2017.
35. Crivello J.V. and Varlemann U.,  Photopolymerization: Fundamentals and Applications, Scranton A.B., Bowman C.N., 
and Pheiffer R.W. (Eds.), ACS Symposium Series, 82-94, 1997.
36. Steinmann B. and Schulthess A., Liquid, Radiation-Curable Composition,  Especially  for  Stereolithography,  US  Pat. 
5,972,563,  1999.
37. Lapim S.C., Snyder J.R., Sitzmann E.V, Barnes D.K., and Green G.D., Stereolithography Using Vinyl Ether-Epoxide 
Polymers,  US  Pat.  5437964, 1995.
38. Lapin S.C. and Brautigam R.J., Stereolithography Using Vinyl Ether Based Polymers, US Pat. 5,506,087, 1996.
39. Yamamura T., Watanabe T., Takeuchi A., and Ukachi T., Photo-Curable Resin Composition Used for Photo-Fabrication 
of Three-Dimensional Object,  US  Pat.  5,981,616, 1999.
40. Putzien S., Louis E., Nuyken O., Crivello J.V., and Kühn F.E., UV Curing of Epoxy Functional Hybrid Silicones,  J. Appl. 
Polym. Sci., 126, 1188-1197, 2012.
41. Zhao T., Yu R., Li X., Zhang Y., Yang X., Zhao X. et al., A Comparative Study on 3D Printed Silicone-Epoxy/Acrylate 
Hybrid Polymers via Pure Photopolymerization and Dual-Curing Mechanisms, J. Appl. Polym. Sci., 54, 5101-5111, 2019.
42. Gupta A. and Ogale A.A., Dual Curing of Carbon Fiber Reinforced Photoresins for Rapid Prototyping,  Polym. 
Compos.,  23, 1162-1170, 2002.