1. Pavan Kalyan B.G. and Kumar L., 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery,
AAPS PharmSciTech, 23, 1-20, 2022.
2. Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., and Long T.E., Polymer Structure-Property Requirements for
Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds, Biomaterials, 140, 170-188, 2017.
3. Pagac M., Hajnys J., Ma Q.P., Jancar L., Jansa J., Stefek P. et al., A Review of Vat Photopolymerization Technology:
Materials, Applications, Challenges, and Future Trends of 3D Printing, Polymers, 13, 598, 2021.
4. Tzeng J.J., Yang T.S., Lee W.F., Chen H., and Chang H.M., Mechanical Properties and Biocompatibility of Urethane
Acrylate-Based 3D-Printed Denture Base Resin, Polymers, 13, 822, 2021 .
5. Yu R., Yang X., Zhang Y., Zhao X., Wu X., Zhao T. et al., Three-Dimensional Printing of Shape Memory Composites
with Epoxy-Acrylate Hybrid Photopolymer, ACS Appl. Mater., 9, 1820-1829, 2017.
6. Baheti P., Bonneaud C., Bouilhac C., Joly-Duhamel C., Howdle S., and Lacroix-Desmazes P., Novel Green Route
Towards Polyesters-Based Resin by Photopolymerization of Star Polymers, EXPRESS Polym. Lett., 13, 1104-1115, 2019.
7. Park H.Y., Yeo J.G., Choi J., Choe G.B., Kim G.N., Koh Y.H. et al., Ceramic Green and Fired Body with a Uniform
Microstructure Prepared Using Living Characteristics of Photo-Curable Cycloaliphatic Epoxide: Applicability of
Cycloaliphatic Epoxide in Photo-Polymerization-Based 3D Printing, J. Eur. Ceram. Soc., 42, 589-599, 2022.
8. Stansbury J.W. and Idacavage M.J., 3D Printing with Polymers: Challenges Among Expanding Options and
Opportunities, Dent. Mater. J., 32, 54-64, 2016.
9. Ge L., Dong L., Wang D., Ge Q., and Gu G., A Digital Light Processing 3D Printer for Fast and High-Precision Fabrication
of Soft Pneumatic Actuators, Sensor. Actuat. A Phys., 273, 285-292, 2018.
10. Tumbleston J.R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A.R., Kelly D. et al., Continuous Liquid Interface Production of 3D Objects, Science, 347, 1349-1352, 2015.
11. Ito T., Hagiwara T., Ozai T., and Miyao T., Rapid Prototyping Resin Compositions, US Pat. 8293810B2, 2005.
12. Collins G.L. and Costanza J.R., Reactions of UV Curable Resin Formulations and Neat Multifunctional Acrylates.
II. Photoinitiated Polymerization of Neat 1, 6-Hexanediol Diacrylate, J. Coat. Technol., 51, 57-63, 1979.
13. Schafer K.J., Hales J.M., Balu M., Belfield K.D., Van Stryland E.W., and Hagan D.J., Two-Photon Absorption Cross-Sections of Common Photoinitiators, J. Photochem. Photobiol. Part A: Chem., 162, 497-502, 2004.
14. Chiappone A., Fantino E., Roppolo I., Lorusso M., Manfredi D., Fino P. et al., 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique, ACS Appl. Mater. Interfaces, 8, 5627-5633, 2016.
15. Bagheri A. and Jin J., Photopolymerization in 3D Printing, ACS Appl. Mater. Interfaces, 1, 593-611, 2019.
16. Park H.K., Shin M., Kim B., Park J.W., and Lee H., A Visible Light-Curable Yet Visible Wavelength-Transparent Resin for
Stereolithography 3D Printing, NPG Asia Mater., 10, 82-89, 2018.
17. Xiao P., Dumur F., Graff B., Gigmes D., Fouassier J.P., and Lalevée J., Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives, Macromolecules, 47, 601-608, 2014.
18. Jauk S. and Liska R., Photoinitiators with Functional Groups, Macromol. Rapid Commun., 26, 1687-1692, 2005.
19. Zhang J., Dumur F., Xiao P., Graff B., Bardelang D., Gigmes D. et al., Structure Design of Naphthalimide Derivatives: Toward Versatile Photoinitiators for Near-UV/visible LEDs, 3D Printing, and Water-Soluble Photoinitiating Systems, Macromolecules, 48, 2054-2063, 2015.
20. Al Mousawi A., Kermagoret A., Versace D.L., Toufaily J., Hamieh T., Graff B. et al., Copper Photoredox Catalysts for
Polymerization Upon Near UV or Visible Light: Structure/Reactivity/Efficiency Relationships and Use in LED Projector
3D Printing Resins, Polym. Chem., 8, 568-580, 2017.
21. Al Mousawi A., Poriel C., Dumu F., Toufaily J., Hamieh T., Fouassier J.P. et al., Zinc Tetraphenylporphyrin as
High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing
Applications, Macromolecules, 50, 746-753, 2017.
22. Al Mousawi A., Garra P., Sallenave X., Dumur F., Toufaily J., Hamieh T. et al., π-Conjugated Dithienophosphole Derivatives as High Performance Photoinitiators for 3D Printing Resins, Macromolecules, 51, 1811-1821, 2018.
23. Al Mousawi A., Garra P., Schmitt M., Toufaily J., Hamieh T., Graff B. et al., 3-Hydroxyflavone and N-Phenylglycine in
High Performance Photoinitiating Systems for 3D Printing and Photocomposites Synthesis, Macromolecules, 51, 4633-4641, 2018.
24. Lin H., Zhang D., Alexander P.G., Yang G., Tan J., Cheng A.W.M. et al., Application of Visible Light-Based Projection
Stereolithography for Live Cell-Scaffold Fabrication with Designed Architecture, Biomaterials, 34, 331-339, 2013.
25. Mayer M.G., Elementarakte U., Mit Zwei Quantensprungen, Ann. Phys., 401, 273-294, 1931.
26. Chen Z., Wang X., Li S., Liu S., Miao H., and Wu S., Near‐Infrared Light Driven Photopolymerization Based on Photon
Upconversion, ChemPhotoChem, 3, 1077-1083, 2019.
27. Méndez-Ramos J., Ruiz-Morales J.C., Acosta-Mora P., and Khaidukov N.M., Infrared-Light Induced Curing of
Photosensitive Resins Through Photon Up-Conversion for Novel Cost-Effective Luminescent 3D-Printing Technology, J.
Mater. Chem. C, 4, 801-806, 2016.
28. Rocheva V.V., Koroleva A.V., Savelyev A.G., Khaydukov K.V., Generalova A.N., Nechaev A.V. et al., High-Resolution 3D
Photopolymerization Assisted by Upconversion Nanoparticles for Rapid Prototyping Applications, Sci. Rep., 8, 1-10, 2018.
29. Panzer M. and Tumbleston J.R., Continuous Liquid Interface Production with Upconversion Photopolymerization, US Pat. 20180126630 A1, 2018.
30. Chan V., Zorlutuna P., Jeong J.H., Kong H., and Bashir R., Three-Dimensional Photopatterning of Hydrogels Using
Stereolithography for Long-Term Cell Encapsulation, Lab Chip, 10, 2062-2070, 2010.
31. Occhetta P., Visone R., Russo L., Cipolla L., Moretti M., and Rasponi M., VA-086 Methacrylate Gelatine Photopolymerizable Hydrogels: A Parametric Study for Highly Biocompatible 3D Cell Embedding, J. Biomed. Mater. Res. A, 103, 2109-2117, 2015.
32. Pawar A.A., Halivni S., Waiskopf N., Ben-Shahar Y., Soreni-Harari M., Bergbreiter S. et al., Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators, Nano Lett., 17, 4497-4501, 2017.
33. Chen H., Vahdati M., Xiao P., Dumur F., and Lalevée J., Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels, Polymers, 13, 3195, 2021.
34. Li J., Zhang X., Nie J., and Zhu X., Visible Light and Water-Soluble Photoinitiating System Based on the Charge Transfer Complex for Free Radical Photopolymerization, J. Photochem. Photobiol. A: Chem., 402, 112803, 2020.