مروری بر قابلیت بالقوه همی‌سلولوزها در تولید محصولات باارزش افزوده زیاد

نوع مقاله : تالیفی

نویسندگان

1 استادیار، گروه پالایش زیستی، دانشکده مهندسی فناوری های نوین، پردیس علمی تحقیقاتی زیراب، دانشگاه شهید بهشتی ،سوادکوه، مازندران، ایران

2 گروه پالایش زیستی، دانشکده مهندسی فناوری های نوین،پردیس علمی تحقیقاتی زیراب،دانشگاه شهید بهشتی، سوادکوه،مازندران، ایران.

3 گروه پالایش زیستی فناوری های نوین، پردیس علمی تحقیقاتی زیراب،دانشگاه شهید بهشتی، سوادکوه، مازندران، ایران

4 'گروه سامانه های زیستی، دانشکده مهندسی فناوری های نوین، دانشگاه شهید بهشتی، پردیس علمی تحقیقاتی زیراب، سوادکوه، مازندران، ایران

چکیده

در دهه‌های اخیر، منابع زیست ­توده به­ دلیل رشد روزافزون جمعیت، بحران نفت، محدودیت‌ها و معایب استفاده از مشتقات نفتی در تمام صنایع اعم از پزشکی و دارویی مورد توجه زیادی قرار گرفته است. سالانه مقادیر زیادی ضایعات لیگنوسلولوزی تولید می ­شود که در حال حاضر بیشتر این ترکیبات یا در محیط زیست رها شده یا برای کاربردهای کم ­ارزش استفاده می­ شوند. مواد زیست­ توده لیگنوسلولوزی به­ عنوان جایگزینی تجدیدپذیر، مقرون به صرفه اقتصادی و فراوان برای منابع فسیلی نویدبخش تولید محصولات متنوع دارای ارزش افزوده هستند. هدف از زیست ­پالایش تبدیل کارآمد ضایعات زیست­ توده به محصولات زیست ­پایه با ارزش افزوده زیاد است. همی ­سلولوزها به­عنوان جزء اصلی ضایعات لیگنوسلولوزی، دومین پلی ­ساکارید فراوان در طبیعت هستند. این هتروپلی­ ساکاریدها به­ طور مستقیم در صنایع غذایی، دارویی، کاغذسازی و غیره استفاده می­ شوند. همچنین، به ­عنوان پلیمرهای پیش ­ساز برای تولید و فراوری مواد شیمیایی مانند زایلیتول، اتانول، فورفورال و غیره استفاده می­ شوند. در این مقاله، کاربرد همی ­سلولوزها در صنایع مختلف و همچنین محصولات باارزش برپایه همی­ سلولوز مرور شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on Potential of Hemicellulose for the Production of Bio-Based Materials

نویسندگان [English]

  • sepideh hamedi 1
  • pardis yousefi 2
  • Esmael Rasooly garmaroody 3
  • Mojtaba koosha 4
1 Assistant Professor, Department of Bioremediation, Faculty of New Technologies Engineering, Zirab Scientific Research Campus, Shahid Beheshti University, Savadkuh, Mazandaran, Iran .
2 Department of Bioremediation, Faculty of Engineering, New Technologies, Shahid Beheshti University, Zirab Scientific Research Campus, Savadkuh, Mazandaran, Iran.
3 Department of Bioremediation, Faculty of Engineering, New Technologies, Shahid Beheshti University, Zirab Scientific Research Campus, Savadkuh, Mazandaran, Iran.
4 Department of Biosystems, Faculty of New Technologies Engineering, Shahid Beheshti University, Zirab Scientific Research Campus, Savadkuh, Mazandaran, Iran.
چکیده [English]

In recent decades, biomass resources have received a lot of attention due to the increasing population growth, oil crisis, limitations and disadvantages of using oil derivatives in all industries, including medicine and pharmaceuticals. A large amount of lignocellulosic waste are generated annually, and currently most of these compounds are either left in the environment or used for low-value applications. Lignocellulosic biomass materials as a renewable, economical, and abundant alternative to fossil resources are promising for the production of diverse value‐added products. In recent years, many researchers have focused on biorefinery concept as a green and safety approach. Biorefinery is aimed to efficient conversion of biomass waste into high value-added bio-based products. As the main component of lignocellulosic waste, hemicelluloses are the second most abundant polysaccharide in nature. These heteropolysaccharides are used directly in food, pharmaceutical, papermaking, etc. Also, they are used as precursor polymers for the production and processing of chemicals such as xylitol, ethanol, furfural, etc. Also, they are used as precursor polymers for the production and processing of chemicals such as xylitol, ethanol, furfural, etc. In this article, the use of hemicelluloses in various industries and also the valuable products based on hemi-cellulose have been reviewed.

کلیدواژه‌ها [English]

  • biorefinery
  • biodegradable polymer
  • hemicellulose
  • xylan
  • high value-added products
1.  Ajao O., Marinova M., Savadogo O., and Paris J., Hemicel-lulose Based Integrated Forest Biorefineries: Implementation 
Strategies, Ind. Crops Prod., 126, 250-260, 2018.
2.  Naidu D.S., Hlangothi S.P., and John M.J., Bio-based Products from Xylan: A Review, Carbohydr. Polym., 179, 28-41, 2018. 
3.  Farhat W., Venditti R.A., Hubbe M., Taha M., Becquart F., and Ayoub A., A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications, ChemSusChem,  10, 305-323, 2017 
4. Shi R., Niu Y., Gong M., Ye J., Tian W., and Zhang L., An-timicrobial Gelatin-Based Elastomer Nanocomposite Mem-
brane Loaded with Ciprofloxacin and Polymyxin B Sulfate in Halloysite Nanotubes for Wound Dressing, Mater. Sci. Eng. C, 87, 128-138, 2018. 
5.  Singh R., Shukla A., Tiwari S., and Srivastava M., A Review on Delignification of Lignocellulosic Biomass for Enhance-ment of Ethanol Production Potential, Renew. Sustain. Energy Rev., 32, 713-728, 2014.
6. Kisonen V., Xu C., Bollström R., Hartman J., Rautkoski H., Nurmi M., Hemming J., Eklund P., and Willför S., O-acetyl 
Galactoglucomannan Esters for Barrier Coatings, Cellulose, 21, 4497-4509, 2014 
8.  Zhang X., Xiao N., Chen M., Wei Y., and Liu C., Functional Packaging Films Originating from Hemicelluloses Laurate by 
Direct Transesterification in Ionic Liquid, Carbohydr. Polym., 229, 115336, 2020.
8. Mugwagwa L.R. and Chimphango A.F.A., Physicochemical Properties and Potential Application of Hemicellulose/Pectin/
Nanocellulose Biocomposites as Active Packaging for Fatty Foods, Food Packag. Shelf Life, 31, 100795, 2022. 
9. Huang B., Liu M., and Zhou C., Chitosan Composite Hydrogels Reinforced with Natural Clay Nanotubes, Carbohydr. Polym., 175, 689-698, 2017. 
10. Mendes F.R.S., Bastos M.S.R., Mendes L.G., Silva A.R.A., Sousa F.D., Monteiro-Moreira A.C.O., Cheng H.N., Biswas 
A., and Moreira R.A., Preparation and Evaluation of Hemicel-lulose Films and their Blends, Food Hydrocoll., 70, 181-190, 
2017. 
11. Guan Y., Zhang B., Tan X., Qi X.-M., Bian J., Peng F., and Sun R.-C., Organic–Inorganic Composite Films Based on Modi-
fied Hemicelluloses with Clay Nanoplatelets, ACS Sustainable Chem. Eng., 2, 1811-1818, 2014.
12. Chen G.-G., Qi X.-M., Guan Y., Peng F., Yao C.-L., and Sun R.-C., High Strength Hemicellulose-Based Nanocompos-
ite Film for Food Packaging Applications, ACS Sustainable Chem. Eng., 4, 1985-1993, 2016. 
13. Bush J.R., Liang H., Dickinson M., and Botchwey E.A., Xylan Hemicellulose Improves Chitosan Hydrogel for Bone Tissue Regeneration, Polym. Adv. Technol., 27, 1050-1055, 2016. 
14. Chen X.-f., Ren J.-l., and Meng L., Influence of Ammonium Zirconium Carbonate on Properties of Poly(vinyl alcohol)/
Xylan Composite Films, J. Nanomater., 16, 179-179, 2015. 
15. Anthony R., Xiang Z., and Runge T., Paper Coating Per-formance of Hemicellulose-Rich Natural Polymer from 
 Distiller's Grains, Prog. Org. Coat., 89, 240-245, 2015. 
16. Xiang Z., Tang N., Jin X., and Gao W., Fabrications and Appli-cations of Hemicellulose-Based Bio-adsorbents,  Carbohydr. Polym., 278, 118945, 2021. 
17. Sun X.-F., Liu B., Jing Z., and Wang H., Preparation and  Adsorption Property of Xylan/Poly(acrylic acid) Magnetic 
Nanocomposite Hydrogel Adsorbent, Carbohydr. Polym., 118, 16-23, 2015. 
18. Chakdar H., Kumar M., Pandiyan K., Singh A., Nanjappan K., Kashyap P.L., and Srivastava A.K., Bacterial Xylanases: 
 Biology to Biotechnology, 3 Biotech, 6, 1-15, 2016. 
19. Cao X., Peng X., Zhong L., and Sun R., Multiresponsive Hy-drogels Based on Xylan-Type Hemicelluloses and Photoi-
somerized Azobenzene Copolymer as Drug Delivery Carrier, J. Agric. Food Chem., 62, 10000-10007, 2014. 
20. Ferreira L.M., Blanes L., Gragnani A., Veiga D.F., Veiga F.P., Nery G.B., Rocha G.H.H.R., Gomes H.C., Rocha M.G., and 
Okamoto R., Hemicellulose Dressing Versus Rayon Dressing in the Re-epithelialization of Split-Thickness Skin Graft Donor Sites: A Multicenter Study, J. Tissue. Viability, 18, 88-94, 2009.
21. Fundador N.G.V., Enomoto-Rogers Y., Takemura A., and Iwata T., Xylan Esters as Bio-Based Nucleating Agents for 
Poly(L-lactic acid), Polym. Deg. Stab., 98, 1064-1071, 2013. 
22. Bao Y., Zhang H., Luan Q., Zheng M., Tang H., and Huang F., Fabrication of Cellulose Nanowhiskers Reinforced Chitosan-Xylan Nanocomposite Films with Antibacterial and Antioxi-dant Activities, Carbohydr. Polym., 184, 66-73, 2018.
23. Tatari A.A. and Zeynali F., Hemicelluloses: Effects, Types and Their Applications as Dry Strength Polymers of Paper, Polym-erization (Persian), 3, 13-25, 2014.
24. Galbe M. and Zacchi G., A Review of the Production of Etha-nol from Softwood, Appl. Microbiol. Biotechnol.,  59, 618-
628, 2002. 
25. Rivas S., Raspolli-Galletti A.M., Antonetti C., Santos V., and Parajó J.C., Sustainable Production of Levulinic Acid from 
the Cellulosic Fraction of Pinus Pinaster Wood: Operation in Aqueous Media Under Microwave Irradiation, J. Wood Chem. Technol., 35, 315-324, 2015. 
26. Canilha L., Chandel A.K., Suzane dos Santos Milessi T., An-tunes F.A.F., Luiz da Costa Freitas W., das Graças Almeida 
Felipe M., and da Silva S.S., Bioconversion of Sugarcane Biomass into Ethanol: An Overview about Composition, 
Pretreatment Methods, Detoxification of Hydrolysates, Enzymatic Saccharification, and Ethanol Fermentation,  J. 
Biomed. Biotechnol., 2012, 989572, 2012. 
27. Gírio F.M., Fonseca C., Carvalheiro F., Duarte L.C., Marques S., and Bogel-Łukasik R., Hemicelluloses for Fuel Ethanol: A 
Review, Bioresour. Technol., 101, 4775-4800, 2010. 
28. Gao C., Ma C., and Xu P., Biotechnological Routes Based on Lactic Acid Production from Biomass, Biotechnol. Adv., 29, 930-939, 2011. 
29. Dusselier M., Van Wouwe P., Dewaele A., Makshina E., and Sels B.F., Lactic Acid as a Platform Chemical in the Biobased Economy: The Role of Chemocatalysis, Energy Environ. Sci., 6, 1415-1442, 2013. 
30. Yan K., Wu G., Lafleur T., and Jarvis C., Productio, Proper-ties and Catalytic Hydrogenation of Furfural to Fuel Additives 
and Value-Added Chemicals, Renew. Sustain. Energy Rev., 38, 663-676, 2014. 
31. Ye L., Han Y., Wang X., Lu X., Qi X., and Yu H., Recent Progress in Furfural Production from Hemicellulose and its 
 Derivatives: Conversion Mechanism, Catalytic System,  Solvent Selection, Molecul. Catal., 515, 111899, 2021. 
32. Mohamad N.L., Mustapa Kamal S.M., and Mokhtar M.N.,  Xylitol Biological Production: A Review of Recent Studies, 
Food Rev. Inter., 31, 74-89, 2015. 
33. Suhartini S., Rohma N.A., Mardawati E., Kasbawati, Hidayat N., and Melville L., Biorefining of Oil Palm 
Empty Fruit Bunches for Bioethanol and Xylitol Production in Indonesia: A Review,  Renew. Sustain. Energy Rev.,  154, 
111817, 2022. 
34. Raj K. and Krishnan C., Improved Co-production of Etha-nol and Xylitol from Low-Temperature Aqueous Ammonia 
Pretreated Sugarcane Bagasse Using Two-Stage High Solids Enzymatic Hydrolysis and Candida Tropicalis, Renewable   
Energy, 153, 392-403, 2020. 
35. Machado G., Leon S., Santos F., Lourega R., Dullius J.,   Elizabete Mollmann M., and Eichler P., Literature Review on Furfural   Production from Lignocellulosic Biomass, Nat. Resour., 7, 115-129, 2016.
36. Farhat W., Venditti R., Quick A., Taha M., Mignard N.,   Becquart F., and Ayoub A., Hemicellulose Extraction and 
Characterization for Applications in Paper Coatings and   Adhesives, Ind. Crops Prod., 107, 370-377, 2017. 
37. Moreira L.R.S. and Filho E.X.F., Insights into the Mechanism of Enzymatic Hydrolysis of Xylan, Appl. Microbiol. Biotech-
nol., 100, 5205-5214, 2016. 
38. Akpinar O., Erdogan K., Bakir U., and Yilmaz L., Comparison of Acid and Enzymatic Hydrolysis of Tobacco Stalk Xylan for Preparation of Xylo-oligosaccharides, LWT Food Sci. Technol., 43, 119-125, 2010.
39. Samanta A.K., Jayapal N., Jayaram C., Roy S., Kolte A.P.,   Senani S., and Sridhar M., Xylo-oligosaccharides as Prebiotics 
from Agricultural By-products: Production and Applications, Bioact. Carbohydr. Diet. Fibre, 5, 62-71, 2015.
40. Hirayama M., Novel Physiological Functions of Oligosaccha-rides, Pure Appl. Chem., 74, 89-94, 2002. 
41. Carvalho A.F.A., Neto P.d.O., da Silva D.F., and Pastore G.M., Xylo-oligosaccharides from Lignocellulosic Materials:   
Chemical Structure, Health Benefits and Production by Chemical and Enzymatic Hydrolysis, Food Res. Int., 51, 75-85, 
2013.
42. Singh R.D., Banerjee J., and Arora A., Prebiotic Potential of Oligosaccharides: A Focus on Xylan Derived Oligosaccha-
rides, Bioact. Carbohydr. Diet. Fibre, 5, 19-30, 2015.
43. Moure A., Gullón P., Domínguez H., and Parajó J.C., Advances in the Manufacture, Purification and Applications of Xylo-oli-gosaccharides as Food Additives and Nutraceuticals, Process Biochem., 41, 1913-1923, 2006.