1. Azdas T. and Hasanzadeh R., A Review on Principles and Fundamentals of Fabrication of Polymeric Foams in Regards
to Increasing Cell Density/Reducing Cell Size, Modares Mech. Eng. (Persian), 19, 211-222, 2019.
2. Roberts R.D. and Kwok J.C., Styrene-Maleic Anhydride Copolymer Foam for Heat Resisant Packaging, J. Cell Plas., 43, 135-143, 2007.
3. Sorrentino L. and Aurilia M., and Iannace S., Polymeric Foams from High-Performance Thermoplasics, Adv. Polym. Technol., 30, 234-243, 2011.
4. Okolieocha C., Raps D., Subramaniam K., and Altsädt V., Microcellular to Nanocellular Polymer Foams: Progress )2004-
2015) and Future Directions-A Review, Eur. Polym. J., 73, 500-519, 2015.
5. Davari M., Razavi Aghjeh M.K., and Seraji S.M., Relationship between the Cell Structure and Mechanical Properties of
Chemically Crosslinked Polyethylene Foams, J. Appl. Polym. Sci., 124, 2789-2797, 2012.
6. Kim Y., Park C.B., Chen P., and Thompson R.B., Origins of the Failure of Classical Nucleation Theory for Nanocellular
Polymer Foams, Soft Matter, 7, 7351-7358, 2012.
7. Mokhtari M., Famili N., and Golbang A., A Review on the Application of Nucleation Theories in Thermoplasic Foams,
Int. J. Plas. Polym. Technol., 4, 11-32, 2016
8. Leung S.N., Wong A., Guo Q., Park C.B., and Zong J.H., Change in the Critical Nucleation Radius and Its Impact on
Cell Stability During Polymeric Foaming Processes, Chem. Eng. Sci., 64, 4899-4907, 2009.
9. Turnbull D. and Vonnegut B., Nucleation Catalysis, Ind. Eng. Chem., 44, 1992-1998, 1952.
10. Yeongyoon K., Park C.B., Chen P., and Thompson R.B., Towards Maximal Cell Density Predictions for Polymeric Foams,
Polymer, 24, 5622-5629, 2011.
11. Merikanto J., Zapadinsky E., Lauri A., and Vehkamäki H., Origin of the Failure of Classical Nucleation Theory: Incorrect
Description of the Smalles Clusers, Phys. Rev. Lett., 98, 145-160, 2007.
12. Saiz-Arroyo C., Rodríguez-Pérez M.Á., Velasco J.I., and de Saja J.A., Infuence of Foaming Process on the Structure–Properties Relationship of Foamed LDPE/Silica Nanocomposites, Compos. Part B: Eng., 48, 40-50, 2013.
13. Bihua X., Xu W., Wang K., Huang Q., Liang W., and Sun X., Study of Mechanical Property and Cellular Structure based
on the Controllable Crosslinking Polyethylene Foaming Materials, IOP Conf. Series Mater. Sci. Eng., 544, 012058,
2019.
14. Jo C. and Naguib H.E., Efect of Nanoclay and Foaming Conditions on the Mechanical Properties of HDPE–Clay Nanocomposite Foams, J. Cell. Plas., 43, 111-121, 2007.
15. Baseghi S., Garmabi H., Gavgani J.N., and Adelnia H., Lightweight High-Density Polyethylene/Carbonaceous
Nanosheets Microcellular Foams with Improved Electrical Conductivity and Mechanical Properties, Am. J. Mater. Sci., 50,
4994-5004, 2015.
16. Zandi F., Rezaei M., and Kasiri A., Efect of Nanoclay on the Physical-Mechanical and Thermal Properties
and Microsructure of Extruded Noncross-linked LDPE Nanocomposite Foams, Key Eng. Mater., 471, 751-756, 2011.
17. Yongsi Y., Iqbal A., Wu C., Wang Y., Li G., and Qi R., Electrical Conductivity of Carbon Black/Single-Wall Carbon Nanotube/Low-Density Polyethylene Ternary Composite Foam, J. Appl. Polym. Sci., 137, 483-493, 2020.
18. Chen L., Blizard K., Straf R., and Wang X., Efect of Filler Size on Cell Nucleation During Foaming Process, J. Cell
Plas., 38, 139-148, 2002.
19. Myers D., Surfaces Interfaces And Colloids, USA, 210-220, 1999.
20. Shaker Raisi B., Yaghmaei S., and Riahi Far M., Methods for Measuring the Surface Tension of Liquids, Iran Ceram. Quart., 2, 22-32, 2016.
21. Ebnesajjad S., Surface Treatment of Materials for Adhesive, Oxford, 20-37, 2013.
22. Biza P., Talc-A Modern Solution for Pitch and Stickies Control, Pap. Technol., 42, 22-24, 2001.
23. Girifalco L.A. and Good R.J., A Theory for the Esimation of Surface and Interfacial Energies. I. Derivation and Application to Interfacial Tension, J. Phys. Chem., 61, 904-909, 1957.
24. Gilman J.J., Direct Measurements of the Surface Energies of Crysals, J. Appl. Phys., 31, 2208-2218, 1960.
25. Lili F., A Study Using Diferent Types of Fumed Silica to Modify the Flowablity, Wettability and Surface Free Energy of a Model Cohesive Powder, PhD Disseration, Monash University, February 2014.
26. Stöckelhuber K.W., Das A., Jurk R., and Heinrich G., Contribution of Physico-Chemical Properties of Interfaces on Dispersibility, Adhesion and Flocculation of Filler Particles in Rubber, Polymer, 51, 1954-1956, 2010.
27. Stockelhuber K.W., Sviskov A., Pelevin A.G., and Heinrich G., Impact of Filler Surface Modifcation on Large Scale
Mechanics of Styrene Butadiene/Silica Rubber Composites, Macromolecules, 44, 4366-4381, 2011.
28. Chen B., Ma N., Bai X., Zhang H., and Zhang Y., Efects of Graphene Oxide on Surface Energy, Mechanical, Damping and Thermal Properties of Ethylene-Propylene-Diene Rubber/Petroleum Resin Blends, Rsc Adv., 2, 4683-4689, 2012.
29. Tang Z., Zhang L., Feng W., Guo B., Liu F., and Jia D., Rational Design of Graphene Surface Chemisry for High-
Performance Rubber/Graphene Composites, Macromolecules, 47, 8663-8673, 2014.
30. Liu Z., Liu J.Z., Cheng Y., Li Z., Wang L., and Zheng Q., Interlayer Binding Energy of Graphite: A Mesoscopic
Determination From Deformation, Phys. Rev. B, 85, 205-418, 2012.
31. Wang S., Zhang Y., Noureddine Abidi, and Luis Cabrales.,Wettability and Surface Free Energy of Graphene Films, Langmuir, 25, 11078-11081, 2009.
32. Lee J. and Lee B., A Simple Method to Determine the Surface Energy of Graphite, Carbon lett., 21, 107-110, 2017.
33. Kooshki R.M., Ghasemi I., Karrabi M., and Azizi H., Nanocomposites Based on Polycarbonate/Poly(butylene
terephthalate) Blends Efects of Disribution and Type of Nanoclay on Morphological Behavior, J. Vinyl Addit. Technol.,
19, 203-212, 2013.
34. Ammar A., Elzatahry A., Al-Maadeed M., Alenizi A.M., Huq A.F., and Karim A., Nanoclay Compatibilization of Phase
Separated Polysulfone/Polyimide Films for Oxygen Barrier, Appl. Clay Sci., 137, 123-134, 2017.
35. Leung S.N., Wong A., Park C.B., and Zong J.H., Ideal Surface Geometries of Nucleating Agents to Enhance Cell Nucleation in Polymeric Foaming Processes, J. Appl. Polym. Sci., 108, 3997-4003, 2008.
36. McClurg R.B., Design Criteria for Ideal Foam Nucleating Agents, Chem. Eng. Sci., 59, 5779-5786, 2004.
37. Leung S.N. and Park C.B., and Li H., Efects of Nucleating Agents Shapes and Interfacial Properties on Cell Nucleation,
J. Cell Plas., 46, 441-460, 2010.