1. Panahirad S., Dadpour M., Peighambardous S.H., Soltanzadeh M., Gullón B., Alirezalu K., and Lorenzo J.M., Applications of Carboxymethyl Cellulose -and Pectin-Based Active Edible Coatings in Preservation of Fruits and Vegetables: A Review, Trends Food Sci. Technol., 110, 663-673, 2021.
2. Flores-López M.L., Cerqueira M.A., de Rodríguez D.J., and Vicente A.A., Perspectives on Utilization of Edible Coatings
and Nano-laminate Coatings for Extension of Posharves Storage of Fruits and Vegetables, Food Eng. Rev., 8, 292-305,
2016.
3. Ma L., Zhang M., Bhandari B., and Gao Z., Recent Developments in Novel Shelf Life Extension Technologies of Fresh-Cut Fruits and Vegetables, Trends Food Sci. Technol., 64, 23-38, 2017.
4. Ocwelwang A.R., Laser and Ultrasound Radiation Pretreatment of Cellulose in Dissolving Wood Pulp, Ph.D Dissertation, College of Agriculture, South Africa, December 2017.
5. Kumar P. and Sethi S., Edible Coating for Fresh Fruit: A Review, Int. J. Curr. Microbiol. Appl. Sci., 7, 2619-2626, 2018.
6. Ghidelli C. and Pérez-Gago M.B., Recent Advances in Modifed Atmosphere Packaging and Edible Coatings to Maintain Quality of Fresh-Cut Fruits and Vegetables, Crit. Rev. Food Sci. Nutr., 58, 662-679, 2018.
7. Sapper M. and Chiralt A., Starch-Based Coatings for Preservation of Fruits and Vegetables, Coatings, 8, 152, 2018.
8. Hasan S.K., Ferrentino G., and Scampicchio M., Nano-emulsion as Advanced Edible Coatings to Preserve the Quality
of Fresh‐Cut Fruits and Vegetables: A Review, Int. J. Food Sci. Technol., 55, 1-10, 2020.
9. Müller K. and Schmid M., Alginate-Based Edible Films and Coatings for Food Packaging Applications, Foods, 7, 2018.
10. Jianglian D. and Shaoying Z., Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review, J.
Food Proc. Technol., 4, 227, 2013.
11. Karbowiak T., Hervet H., Léger L., Champion D., Debeaufort F., and Voilley A., Efect of Plasicizers (Water and Glycerol)
on the Difusion of a Small Molecule in Iota-Carrageenan Biopolymer Films for Edible Coating Application, Biomacromolecules, 7, 2011-2019, 2006.
12. Vildan E., Ismail T., and Selman T., The Efect of Edible Coatings on Physical and Chemical Characterisics of Fruit
Bars, J. Food. Lipids, 14, 1775-1783, 2020.
13. Nor S.M. and Ding P., Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review, Food Res.
Int., 134, 109208, 2020.
14. Bhardwaj A., Alam T., Sharma V., Alam M.S., Hamid H., and Deshwal G.K., Lignocellulosic Agricultural Biomass as
a Biodegradable and Eco-Friendly Alternative for Polymer-Based Food Packaging, J. Packag. Technol. Res., 4, 205–216,
2020.
15. Travaini R., Martín-Juárez J., Lorenzo-Hernando A., and Bolado-Rodríguez S., Ozonolysis: An Advantageous retreatment for Lignocellulosic Biomass Revisited, Bioresour. Technol., 199, 2-12, 2016.
16. Falguera V., Quintero J.P., Jiménez A., Muñoz J.A. and Ibarz A., Edible Films and Coatings: Structures, Active Functions
and Trends in their Use, Trends Food Sci. Technol., 22, 292-303, 2011.
17. Embuscado M.E. and Huber K.C., Edible Films and Coatings for Food Applications, Springer, New York, USA, 9, 2009.
18. McHugh T.H. and Senesi E., Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh‐Cut Apples, J. Food Sci., 65, 480-485, 2000
19. Cisneros‐Zevallos L. and Krochta J.M., Dependence of Coating thickness on Viscosity of Coating Solution Applied
to Fruits and Vegetables by Dipping Method, J. Food Sci., 68, 503-510, 2003.
20. Ghanbarzadeh B., Almasi H., and Entezami A.A., Physical Properties of Edible Modifed Starch/Carboxymethyl Cellulose Films, Innovative Food Sci. Emerging Technol., 11, 697-702, 2010.
21. Fishman M.L., Cofn D.R., Onwulata C.I., and Konsance R.P., Extrusion of Pectin and Glycerol with Various Combinations
of Orange Albedo and Starch, Carbohydr. Polym., 57, 401-413, 2004.
22. Kocira A., Kozłowicz K., Panasiewicz K., Staniak M., Szpunar-Krok E., and Hortyńska P., Polysaccharides as Edible
Films and Coatings: Characterisics and Infuence on Fruit and Vegetable Quality-A Review, Agronomy, 11, 813, 2021.
23. Otoni C.G., Avena‐Busillos R.J., Azeredo H.M., Lorevice M.V., Moura M.R., Mattoso L.H., and McHugh T.H., Recent
Advances on Edible Films Based on and Vegetables-A Review, Compr. Rev. Food Sci. Food Saf., 16, 1151-1169, 2017.
24. Yang Y., Ren J., Luo C., Yuan R., and Ge L., Fabrication of l-Menthol Contained Edible Self-healing Coating Based on
Gues-Hos Interaction, Colloids Surf. A., 597, 124743, 2020.
25. Hubbe M.A., Ferrer A., Tyagi P., Yin Y., Salas C., Pal L., and Rojas O.J., Nanocellulose in Thin Films, Coatings, and Plies
for Packaging Applications: A Review, BioResources, 12, 2143-2233, 2017.
26. Shimizu M., Saito T., and Isogai A., Water-Resisant and High Oxygen-Barrier Nanocellulose Films with Interfbrillar Cross-linkages Formed through Multivalent Metal Ions, J. Membr. Sci., 500, 1-7, 2016.
27. Fu F., Zhang W., Zhang R., Liu L., Chen S., Zhang Y. and Yau J., NaOH/Urea Solution Spinning of Cellulose Hybrid Fibers Embedded with Ag Nanoparticles: Infuence of Stretching on sructure and Properties, Cellulose, 25, 7211-7224, 2018.
28. Chen K., Xu W., Ding Y., Xue P., Sheng P., Qiao H., and He J., Hemp-Based All-Cellulose Composites through Ionic Liquid Promoted Controllable Dissolution and Structural Control, Carbohydr. Polym., 235, 116027, 2020.
29. Häkkinen R., Carbohydrates in Deep Eutectic Solvents, Ph.D Dissertation, Insitute of chemisry of Renewable Resources, Ausria, 2020.
30. Isci A., Erdem G.M., Elmaci S.B., Sakiyan O., Lamp A., and Kaltschmitt M., Efect of Microwave-Assised Deep Eutectic Solvent Pretreatment on Lignocellulosic Structure and Bioconversion of Wheat Straw, Cellulose, 27, 8949-8962, 2020.
31. Shi Z., Liu Y., Xu H., Yang Q., Xiong C., Kuga S., and Matsumoto Y., Facile Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution by Ball Milling Pretreatment, Ind. Crops Prod., 118, 48-52, 2018.
32. Li X., Ye J., Chen J., Yu J., Ding M., and Hong J., Dissolution of Wheat Straw with Aqueous NaOH/Urea Solution, Fibers
Polym., 16, 2368-2374, 2015.
33. Wei Q.Y., Lin H., Yang B., Li L., Zhang L.Q., Huang H.D., et al., Structure and Properties of All-Cellulose Composites Prepared by Controlling the Dissolution Temperature of a NaOH/Urea Solvent, Ind. Eng. Chem. Res., 59, 10428-10435, 2020.
34. Fathi Z., Hamzeh Y., and Abdolkhani A., Preparation of Lignocellulosic Film by Dissolving of Rice Straw in Alkaline
Solution, Packaging (Persian), 43, 18-29, 2020.
35. Sirviö J.A. and Heiskanen J., Room-Temperature Dissolution and Chemical Modifcation of Cellulose in Aqueous
Tetraethylammonium Hydroxide–Carbamide Solutions, Cellulose, 27, 1933-1950, 2020.
36. Su Y., Yang B., Liu J., Sun B., Cao C., Zou X. et al., Prospects for Replacement of Some Plasics in Packaging with Lignocellulose Materials: A Brief Review, BioResources, 13, 4550-4576, 2018.
37. Ghorbani M., Kianmehr M.H., Arabhosseini A., Sarlaki E., Asadi Alamouti A., and Sadeghi, R., Ozonolysis: A Novel and
Efective Oxidation Technique for Lignocellulosic Biomass Pretreatment, In Proceedings of 12th National Congress on
Biosysems Engineering and Agricultural Mechanization, 5-7 February, Iran, 2020.
38. Benko E.M. and Lunin V.V., Ozone Pretreatment and Bioconversion of Pine Wood to Monosaccharides, Russ. J.
Phys. Chem. A, 94, 226-230, 2020.
39. Rosen Y., Mamane H., and GerchmanY., Short Ozonation of Lignocellulosic Wase as Energetically Favorable Pretreatment, Bioenergy Res., 12, 292-301, 2019.