اثر نانوذرات الماس بر آمیزه‌های لاستیکی

نوع مقاله : تالیفی

نویسندگان

1 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ولی عصر (عج) رفسنجان

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه ولی عصر(عج) رفسنجان

چکیده

در چند دهه­ اخیر، صنایع مختلف پلیمری شاهد افزایش استفاده از نانوذرات در راستای کاربردهای مختلف بوده ­اند. صنعت لاستیک یکی از این صنایع و نانوالماس یکی از این نانوذرات­ است. نانوالماس، به ­دلیل دارابودن ویژگی ­های بارزی چون خواص مکانیکی عالی و رسانندگی گرمایی زیاد در صنایع متنوعی مورد توجه ویژه قرار گرفته است. به­ عنوان نمونه، به استفاده از نانوالماس در آمیزه­ های لاستیکی به ­تنهایی یا در کنار سایر پرکننده ­ها، اخیرا بسیار پرداخته شده است. با ترکیب این نانوذرات با ماتریس لاستیک، انواع مختلفی از لاستیک­ ها با قابلیت­ های بیشتر تولید شده است. این قابلیت، شامل خواص فیزیکی و مکانیکی و خواص گرمایی بهتر بوده و درنتیجه شرایط پخت آسان­تر است. ویژگی ­های یادشده بیشتر مرهون سطح فعال نانوالماس و همچنین رسانندگی گرمایی بسیار خوب آن است. به ­طور کلی، استفاده از نانوالماس در صنعت لاستیک با اهداف مختلف انجام می­ گیرد. در این مقاله، ضمن معرفی این دلایل و اهداف و موارد استفاده از این نانوذره در انواع لاستیک مانند لاستیک ­های طبیعی، استیرن-بوتادی­ان، نیتریل وغیره پرداخته شده است. همچنین سعی شده است، جدیدترین پژوهش­ های انجام ­شده در این زمینه بررسی و نتایج نهایی به ­طورخلاصه ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of Diamond Nanoparticles on Rubber Compounds

نویسندگان [English]

  • Mohammadmahdi Kamyabi 1
  • Seyed Mohammad Sadegh Hosseini 2
  • Hanieh Jamalizadeh 2
1 School of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan,
2 School of Chemical Engineering, Faculty of Engineering, Vali-e-Asr University of Rafsanjan,
چکیده [English]

In the last few decades, various polymer industries have witnessed the increasing use of nanoparticles for various applications. Rubber industry is one of these industries and nanodiamond is one of these nanoparticles. Nanodiamond has received special attention in various industries due to its outstanding properties such as excellent mechanical properties and high thermal conductivity. For example, the use of nanodiamond in rubber compounds alone or in combination with other fillers has recently received a lot of attention. By combining these nanoparticles with rubber matrix, different types of rubbers with more capabilities have been produced. These capabilities include better physical, mechanical and thermal properties as well as easier curing procedures. The mentioned properties are mostly due to the active surface of the nanodiamond as well as its excellent thermal conductivity. In general, nanodiamonds are used in the rubber industry for different purposes. In this article, while introducing these reasons and purposes, the use cases of this nanoparticle in various types of rubber such as natural rubber, styrene-butadiene, nitrile, etc. have been discussed.  The latest research in this field has been reviewed and the final results have been presented in summary.

کلیدواژه‌ها [English]

  • nanodiamond
  • rubber
  • physical and mechanical properties
  • thermal properties
  • curing kinetics
1. Ahmari H.,  Ghafuri M., and  Izadpanah S., The  Use  of  Nanoparticles  in  the  Tires, 1s  National Conference on 
Nano Science & Nano Technology, Yazd, 16-18 Febreuary, 2011. 
2. Thomas S. and Stephen R.,  Rubber Nanocomposites: Preparation, Properties, and Applications, John Wiley and 
Sons, New York, 209-217, 2010. 
3. Arroyo M., Lopez-Manchado M.A., and Herrero B., Organo-Montmorillonite as Subsitute of Carbon Black in Natural 
Rubber Compounds, Polymer, 44, 2447-2453, 2003. 
4. Tian Q., Zhang C., Tang Y., Liu Y., Niu L., Ding T., Li X., and Zhang Z., Preparation of Hexamethyl Disilazane-Surface 
Functionalized Nano-Silica by Controlling Surface Chemisry and Its Agglomeration-Collapse Behavior in Solution 
Polymerized Styrene Butadiene Rubber/Butadiene Rubber Composites, Compos. Sci. Technol., 201, 108482, 2021 
5.  Ameli A., Nofar M., Park C.B., Pötschke P., and Rizvi G., Polypropylene/Carbon Nanotube Nano/Microcellular 
Structures with High Dielectric Permittivity, Low Dielectric Loss, and Low Percolation Threshold, Carbon, 71, 206-217, 2014. 
6. Vahidifar A., Esmizadeh E., Elahi M., Ghoreishy M.H.R., Naderi G., and Rodrigue D., Thermoplasic Vulcanizate Nanocomposites Based on Polyethylene/Reclaimed Rubber: A Correlation Between Carbon Nanotube Dispersion State 
and Electrical Percolation Threshold, J. Appl. Polym. Sci., 136, 47795, 2019. 
7. Chen X.Y., Vinh-Thang H., Rodrigue D., and Kaliaguine S., Efect of Macrovoids in Nano-Silica/Polyimide Mixed Matrix 
Membranes for High Flux CO2/CH4 Gas Separation,  RSC Adv., 4, 12235-12244, 2014. 
8. Esmizadeh E., Naderi G., and Paran S.M.R., Preparation and Characterization of Hybrid Nanocomposites Based on NBR/
Nanoclay/Carbon Black, Polym. Compos., 38, 181-188, 2017.
9. Fu J. and Naguib H.E., Efect of Nanoclay on the Mechanical Properties of PMMA/Clay Nanocomposite Foams,  J.  Cell. 
Plas., 42, 325-342, 2006. 
10. Paul D.R. and Robeson L.M., Polymer Nanotechnology: Nanocomposites, Polymer, 49, 3187-3204, 2008. 
11. Karami P., Khasraghi S.S., Hashemi M., Rabiei S., and Shojaei A., Polymer/Nanodiamond Composites-A Comprehensive 
Review from Synthesis and Fabrication to Properties and Applications, Adv. Colloid Interfac Sci., 269, 122-151, 2019.
12. Abbasian A., Mohebbi H., and Mobasherpour A., An Introduction to the Applications of Nano Diamonds, Fazaye 
Nano (Persian), 16, 12-20, 2005. 
13. Dolmatov V.Y., Detonation-Synthesis Nanodiamonds: Synthesis, Structure, Properties and Applications,  Russ. 
Chem. Rev., 76, 339, 2007. 
14. Barikani M., Kalaee M., Mazinani S., and Barikani M., Nano-Diamonds and Nano-Polymer Structures, J. Iran. Chem. Eng. (Persian), 14, 75-86, 2015.
15. Shakun A., Vuorinen J., Hoikkanen M., Poikelispää M., and Das A., Hard Nanodiamonds in Soft Rubbers: Pas, Present 
and Future–A Review, Compos. Part A: Appl. Sci., 64, 49-69, 2014.
16. Chimova G.,  Synthesis and Characterization of Nano-Crysalline Diamond Films, MSc Thesis, South Africa,University of the Witwatersrand, Johannesburg, 2011. 
17. Rabiei S. and Shojaei A., Vulcanization Kinetics and Reversion Behavior of Natural Rubber/Styrene-Butadiene Rubber Blend Filled with Nanodiamond–The Role of Sulfur Curing Sysem, Eur. Polym. J., 81, 98-113, 2016.
18. Jafarpour E., Shojaei A., and Ahmadijokani F., High-Performance Styrene-Butadiene Rubber Nanocomposites Based 
on Carbon Nanotube/Nanodiamond Hybrid with Synergisic Thermal Conduction Characterisics and Electrically Insulating 
Properties,  Polymer,  196,  122470,  2020.
19. Dolmatov V.Y., Composition Materials Based on Elasomer and Polymer Matrices Filled with Nanodiamonds of Detonation Synthesis, Nanotechnol. Russ., 4, 556, 2009.
20. Dolmatov V.Y., Applications of Detonation Nanodiamond, in Ultrananocrysalline Diamond, Shenderova O.A. and Gruen D.M. (Eds.), 1s ed., Elsevier, England, 477-527, 2006.
21. Yang Z., Huang Y., and Xiong Y., A Functional Modifed Graphene Oxide/Nanodiamond/Nano Zinc Oxide Composite 
for Excellent Vulcanization Properties of Natural Rubber, RSC Adv., 10, 41857-41870, 2020. 
22. Pichot V., Risse B., Schnell F., Mory J., and Spitzer D., Undersanding Ultrafne Nanodiamond Formation Using 
Nanosructured Explosives, Sci. Rep., 3, 1-6, 2013. 
23. Petrov E.A. and Zelenkov V.M., Modifcation of Rubber Properties with Ultradispersed Diamond-Containing Material, 
Process All-Union Conference on Detonation, Krasnoyarsk, Russia, 219-224, 1991.
24. Tsypkina I.M. and Voznyakovskii A.P., The Infuence of Detonation Nanocarbon on Compounds Based on SKI-3 and 
SKI-5 Rubbers,  Kauch Rezina, 1, 10-13, 2003.
25.  Lyamkin  A.I., Red’kin  V.E., Chiganova  G.A., Goncharov V.M., and  Ershov D.V., Production Propertie and Application 
of Detonation Nanocarbon in Elasomeric Composites, Polym. Sci. Technol., 33, 9-13, 2006. 
26. Akopyan L.A., Zlotnikov M.N., Rumyantsev B.V., Abramova N.L., Zobina M.V., and Mordvintseva T.L.,  Synthesis of 
Explosive Decompression-Resisant Rubbers with the Use of Detonation Carbon, Phys. Solid State, 46, 742-745, 2004.
27. Adrianova O.A., Sokolova M.D., and Popov S.N., Application of Ultradispersed Diamonds in Modifcation of Fros-Resisant Elasomers, Kauch Rezina, 6, 11-15, 1999.
28. Branson B.T.,  Fluids and Polymer Composites Comprising Detonation Nanodiamond, Ph.D Thesis, United States, 
Graduate School of Vanderbilt University, 2010.
29. Dolmatov V.Y., Polymer-Diamond Composites Based on Detonation Nanodiamonds.  Part 2,  J. Superheat. Mater., 
29, 65-75, 2007. 
30. Shenderova O., Tyler T., Cunningham G., Ray M., Walsh J., Casulli M., Hens S., McGuire G., Kuznetsov V., and Lipa S., 
Nanodiamond and Onion-Like Carbon Polymer Nanocomposites, Diam. Relat. Mater., 16, 1213-1217, 2007. 
31. Voznyakovskii A.P., Self-Organization in Nanocomposites Based on Detonation Nanodiamonds, Phys. Solid State,  46, 
644-648, 2004. 
32. Voznyakovskii A.P. and Prokoshev A.O., Model of Polymer Reinforcement with Detonation Nanodiamonds,  Macromol. 
Sci. B, 52, 1811-1817, 2013. 
33. Luo W., Li L., Luo B., Zhang F., Wang T., Yao Y., and Xu W., Nanodiamond-Filled High-Temperature Vulcanized Silicon 
Rubber Composite for High-Voltage Insulator Applications, J. Mater. Sci.: Mater. Electronic., 32, 23116-23125, 2021.
34. Qu J., Fan L., Mukerabigwi J.F., Liu C., and Cao Y., A Silicon Rubber Composite with Enhanced Thermal Conductivity and Mechanical Properties Based on Nanodiamond and Boron Nitride Fillers, Polym. Compos., 42, 4390-4396, 2021.
35. Sirotinkin N.V., Voznyakovskii A.P., and Ershova A.N., Model of Formation of Three-Dimensional Polyurethane Films 
Modifed by Detonation Nanodiamonds,  Phys. Solid State, 46, 746-747, 2004. 
36. Ozerin A.N., Kurkin T.S., Alkhanishvili G.G., Kechek’yan A.S., Gritsenko O.T., Perov N.S., Ozerina L.A., Beshenko M.A., 
and Dolmatov V.Y., The Structure and Properties of Polymer-Nanodiamond Composites on the Base of Block-Copolymer Polysyrene-Polybutedien-Polysyrene, Nanotechnol. Russ., 4, 480-488, 2009. 
37. Lim D.P., Lee J.Y., Lim D.S., Ahn S.G., and Lyo I.W., Efect of Reinforcement Particle Size on the Tribological Properties of 
Nano-Diamond Filled Polytetrafuoroethylene Based Coating, J. Nanosci. Nanotechnol., 9, 4197-4201, 2009.