مروری بر تهیه نانوالیاف دوخاصیتی با روش الکتروریسی‌ همبَر

نوع مقاله : تالیفی

نویسندگان

1 عضو هیئت علمی دانشکده نساجی دانشگاه گیلان

2 گروه مهندسی نساجی- دانشکده فنی - دانشگاه گیلان

3 دانشگاه گیلان، دانشکده فنی و مهندسی، گروه مهندسی نساجی

چکیده

الکتروریسی، از روش ­های آسان و کارآمد برای تهیه نانوالیاف در مقیاس آزمایشگاهی و صنعتی است. طی سال ­های اخیر، مطالعات انجام­ شده بیانگر توجه ویژه به ساختارهای خاص، افزایش کاربرد و رفع نقص ­های روش­ های پیشین است. ساختار دوخاصیتی، از ساختارهای نوین و پرکاربرد است که گزارش­ های منتشرشده درباره آن، به­ دلیل محدودیت و چالش ­های موجود در دستیابی به ساختار دوخاصیتی، از قبیل طراحی افشانک، جدایش فاز دو محلول پلیمری در حین الکتروریسی، واپایش سرعت جریان، درنظرگرفتن ولتاژ بهینه و سایر پارامترها، محدود است. الکتروریسی مجاور یکی از راه­ های معمول برای دستیابی بدین ساختار خاص است که می­ توان به­ کمک آن و طراحی افشانک مناسب، دو محلول پلیمری را به ­طور هم­زمان الکتروریسی کرد. در این روش، تهیه افشانک و طراحی پارامترهای وابسته به آن مانند قطر سوزن، زاویه و فاصله بین دو افشانک، از اهمیت ویژه ­ای برخوردار است. همچنین، پارامترهای مربوط به رفتار رئولوژیکی پلیمر، به ­ویژه گرانروی، از نکات حیاتی در دستیابی بدین ساختار خاص است. در این مقاله، ضمن مرور روش ­های تهیه نانوالیاف دوخاصیتی به­ روش الکتروریسی مجاور، ساختارهای نوین بر مبنای نانوالیاف دوخاصیتی شامل بررسی ساختار و روش ­های تولید از طریق الکتروریسی مجاور نیز به­ طور اجمالی بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on Fabrication of Janus Nanofibers through Side-by-Side Electrospinning Method

نویسندگان [English]

  • Mahdi Nouri 1
  • Fatemeh Ahadi 2
  • Mostafa Jamshidi Avanaki 3
1 Textile department, University of Guilan
2 Department of Textile Engineering, Faculty of Engineering, University of Guilan
3 Department of Textile Engineering, Faculty of Engineering, University of Guilan
چکیده [English]

Electrospinning is an easy and efficient method for preparing nanofibers on laboratory and industrial scales. In recent years, various studies have been done with special attentions to specific structures, increasing the application and eliminating the shortcomings of previous methods. Janus structure is one of the new and widely used structures that due to the limitations and challenges in achieving this structure, such as nozzle design, phase separation of two polymer solutions during electrospinning, flow rate control, optimal voltage and other parameters, the published reports in this field, are limited. Side-by-side electrospinning is one of the common ways to achieve this special structure. In this method, with appropriate nozzle design, two polymer solutions can be electrospun simultaneously. In addition, the nozzle design and the related parameters such as needle diameter, angle, and distance between the nozzles are of special importance. Also, parameters related to the rheological behavior of the polymer, especially viscosity, are crucial in achieving this particular structure. In this paper, the methods of preparation of Janus nanofibers by side-by-side electrospinning method, new structures based on these nanofibers, including the study of structure and production methods through side-by-side electrospinning, are briefly reviewed.

کلیدواژه‌ها [English]

  • side-by-side electrospinning
  • Janus nanofiber
  • nozzle design
  • Janus structure
  • polymer solution
1. Saleh Hudin H.S., Mohamad E.N.,  Mahadi W.N.L.,  and Muhammad  Aff A.,  Multiple-Jet  Electrospinning  Methods 
for  Nanofber  Processig: A Review, Mater.  Manuf. Process, 33, 479-498, 2018.
2.   Xue J., Wu T., Dai Y., and Xia Y., Electrospinning and Electrospun Nanofbers: Methods, Materials, and Applications, 
Chem. Rev.,  119, 5298-5415, 2019.
3. Yördem O., Papila M., and Menceloğlu Y.Z., Efects of Electrospinning Parameters on Polyacrylonitrile Nanofber 
Diameter: An Invesigation by Response Surface Methodology, Mater. Des.,  29, 34-44, 2008.
4.  Jin L., Xu Q., Kuddannaya S., Li C., Zhang Y., and Wang Z., Fabrication and Characterization of Three-Dimensional (3D) 
Core–Shell Structure Nanofbers Designed for 3D Dynamic Cell Culture, ACS Appl. Mater. Interfaces,  9, 17718-17726, 2017.
5.  Andrady Anthony L.,  Science and Technology of Polymer Nanofbers, John Wiley and Sons, USA, Chap. 1, 2008.
6.  Agarwal S., Wendorf J.H., and Greiner A., Use of Electrospinning Technique for Biomedical Applications, Polymer,  49,  5603-5621, 2008.
7.  Wang K., Liu X.K., Chen X.H., Yu D.G., Yang Y.Y., and Liu P., Electrospun Hydrophilic Janus Nanocomposites for the 
Rapid Onset of Therapeutic Action of Helicid,  ACS Appl. Mater. Interfaces, 10, 2859-2867, 2018.
8.  Demir M.M., Yilgor I., Yilgor E., and Erman B., Electrospinning of Polyurethane Fibers, Polymer, 43, 3303-3309, 2002.
9.  Alharbi A.R., Alarif I.M., Khan W.S., and Asmatulu R., Highly Hydrophilic Electrospun Polyacrylonitrile/Polyvinypyrrolidone Nanofbers Incorporated with Gentamicin as Filter Medium for Dam Water and Wasewater Treatment,  J. Membr. Sep. Technol.,  5, 38-56, 2016.
10. Bhardwaj N. and Kundu S.C., Electrospinning: A Fascinating Fiber Fabrication Technique, Biotechnol. Adv., 28, 325-347, 
2010.
11. Yarin A.L., Koombhongse S., and Reneker D.H., Bending Insability in Electrospinning of Nanofbers,  J. Appl. Phys., 89, 3018-3026, 2001.
12. Haider A., Haider S., and Kang I.-K., A Comprehensive Review Summarizing the Efect of Electrospinning Parameters 
and Potential Applications of Nanofbers in Biomedical and Biotechnology, Arab. J. Chem.,  11, 1165-1188, 2018.
13. Ramakrishnan S.,  An Introduction to Electrospinning and Nanofbers, World Scientifc, Singapore, Chap. 3, 2005.
14. Elahi M.F., Lu W., Guoping G., and Khan F., Core-Shell Fibers for Biomedical Applications-A Review, J. Bioeng. Biomed. 
Sci., 3, 1-14, 2013.
15. Ponnamma D., Chamakh M.M., Alahzm A.M., Salim N., Hameed N., and Al Maadeed M.A.A., Core-Shell Nanofbers 
of Polyvinylidene Fluoride-Based Nanocomposites as Piezoelectric Nano Generators,  Polymers,  12, 2344, 2020.
16. Tanha N.R. and Nouri M., Core/Shell Nanofbers of Silk Fibroin/Polyvinyl Alcohol: Structure and Controlled Release 
Behavior, Iran. J. Polym. Sci. Technol. (Persian), 30, 473-488, 2018.
17. Chen Z., Yang T., Shi H., Wang T., Zhang M., and Cao G., Single Nozzle Electrospinning Synthesized MoO2@C Core 
Shell Nanofbers with High Capacity and Long‐Term Stability for Lithium‐Ion Storage, Adv. Mater. Interfaces, 4, 1600816, 
2017. 
18.   Schreuder-Gibson H., Gibson P., Senecal K., Sennett M., and Walker J., Protective Textile Materials Based on Electrospun Nanofbers, J. Adv. Mater., 34, 44-55, 2002.
19. Guler M.O., Soukasene S., Hulvat J.F., and Stupp S.I., Presentation and Recognition of Biotin on Nanofbers Formed 
by Branched Peptide Amphiphiles, Nano. Lett.,  5, 249-252, 2005.
20. Gupta P. and Wilkes G.L., Some Invesigations on the Fiber Formation by Utilizing a Side-by-Side Bicomponent Electrospinning Approach,  Polymer,  44, 6353-6359, 2003.
21. Srivasava Y., Marquez M., and Thorsen T., Microfuidic Electrospinning of Biphasic Nanofbers with Janus Morphology, 
Biomicrofuidics,  3, 012801, 2009.
22. Zhang B., Li C., and Chang M., Curled Poly(ethylene glycol terephthalate)/ Poly(ethylene propanediol terephthalate) 
Nanofbers Produced by Side-by-Side Electrospinning, Polym. J.,  41, 252-253, 2009.
23. Liu Z., Sun D.D., Guo P., and Leckie J.O., An Efcient Bicomponent TiO2/SnO2 Nanofber Photocatalys Fabricated 
by Electrospinning with a Side-by-Side Dual Spinneret Method,  Nano. Lett., 7, 1081-1085, 2007.
24. Jiang S., Jin Q., and Agarwal S., Template Assised Change in Morphology from Particles to Nanofbers by Side‐by‐Side 
Electrospinning of Block Copolymers,  Macromol. Mater. Eng., 299, 1298-1305, 2014. 
25. Chen G., Xu Y., Yu D.G., Zhang D.F., Chatterton N.P., and White K.N., Structure-Tunable Janus Fibers Fabricated Using Spinnerets with Varying Port Angles, Chem. Commun.,  51, 4623-4626, 2015.
26. Peng L., Jiang S., Seuß M., Fery A., Lang G., Scheibel T., and Agarwal S., Two‐in‐One Composite Fibers with Side‐
by‐Side Arrangement of Silk Fibroin and Poly(L‐lactide) by Electrospinning, Macromol. Mater. Eng.,  301, 48-55, 2016.
27. Peng L.,  Bicomponent Porous Fibrous Membranes with Special Fiber Morphologies and Properties, PhD Thesis, 
University of  Bayreuth, Germany, September 2017.
28. Geng Y., Zhang P., Wang Q., Liu Y., and Pan K., Novel PAN/PVP Janus Ultrafne Fiber Membrane and Its Application for 
Biphasic Drug Release,  J. Mater. Chem. B,  5, 5390-5396, 2017.
29. Cai M., Yuan D., Zhang X., Pu Y., Liu X., He H., Zhang L., and Ning X., Efcient Synthesis of PVDF/PI Side-by-Side 
Bicomponent Nanofber Membrane with Enhanced Mechanical Strength and Good Thermal Stability, Nanomaterials (Basel), 9, 39, 2019.
30. Cai M., Yuan D., Zhang X., Pu Y., Liu X., He H., Zhang L., and Ning X., Lithium ion Battery Separator with Improved 
Performance Via Side-by-Side Bicomponent Electrospinning of PVDF-HFP/PI Followed by 3D Thermal Crosslinking,  J. 
Power. Sources, 461, 228123, 2020.
31. Xiao W., Zhao L., Gong Y., Liu J., and Yan C., Preparation and Performance of Poly(vinyl alcohol) Porous Separator for 
Lithium-Ion Batteries, J. Membr. Sci., 487, 221-228, 2015.
32. Wang S.-H., Hou S.-S., Kuo P.-L., and Teng H., Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel Electrolyte 
with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries, ACS Appl. Mater. Inter., 5, 8477-8485, 
2013.
33. Wang M., Li D., Li J., Li S., Chen Z., Yu D.G., Liu Z., and Guo J.Z., Electrospun Janus Zein–PVP Nanofbers Provide a Two-
Stage Controlled Release of Poorly Water-Soluble Drugs, Mater. Des., 196, 109075, 2020.
34. Yang J., Wang K., Yu D.G., Yang Y.,  Bligh S.W.A., and Williams G.R., Electrospun Janus Nanofbers Loaded with a Drug and Inorganic Nanoparticles as an Efective Antibacterial Wound Dressing, Mater. Sci. Eng., 111, 110805, 2020.
35. Liu W., Zhong T., Liu T., Zhang J., and Liu H., Preparation and Characterization of Electrospun Conductive Janus Nanofbers with Polyaniline,  ACS Appl. Polym. Mater.,  2, 2819-2829, 2020