1. Reynolds C.D., Hoyle D.M., McLeish T.C.B., and Thompson R.L., Chain-Stretch Relaxation from Low-Frequency Fourier
Transform Rheology, Phys. Rev. Res., 2, 334-357, 2020.
2. Hirschberg V., Fourier Transform Rheology as a Tool to De ter mine the Fatigue Behavior of Polymers, MSc Thesis,
Laval University, March 2020.
3. Van Den Berg M.E.H., Kuser S., Windhab E.J., Sagis L.M.C., and Fischer P., Non-Linear Shear and Dilatational Rheology
of Viscoelasic Interfacial Layers of Cellulose Nanocrysals, Phys. Fluids, 30, 721-733, 2018.
4. Klein C., Rheology and Fourier-Transform Rheology on Wa-ter-Based Sysems, Logos Verlag, Berlin, pp. 29-63, 2008.
5. Boisly M., Käsner M., Brummund J., and Ulbricht V., Large Amplitude Oscillatory Shear of the Prandtl Element Anal ysed
by Fourier Transform Rheology, Appl. Rheol., 24, 32-42, 2014.
6. Sagis L.M.C. and Fischer P., Non-Linear Rheology of Com-plex Fluid–Fluid Interfaces, Curr. Opin. Colloid Interface Sci.,
19, 520-529, 2014.
7. Qi X., Shan L., Liu S., Li Z., Liu G., and Tan Y., Non-Linear Rheological Characterisics of Fine Aggregate Matrix Based
on FT-Rheology, Consr. Build. Mater., 274, 121-135, 2021.
8. Yasin S., Hussain M., Zheng Q., and Song Y., Large Ampli-tude Oscillatory Rheology of Silica and Cellulose Nanocrys-
tals Filled Natural Rubber Compounds, J. Colloid Interface Sci., 588, 602-610, 2021.
9. Lim H.T., Ahn K.H., Hong J.S., and Hyun K., Non-Linear Vis coelasicity of Polymer Nanocomposites Under Large
Am plitude Oscillatory Shear Flow, J. Rheol., 57, 767-789, 2013.
10. Mendoza A.J., Guzmán E., Martinez-Pedrero F., Ritacco H., Rubio R.G., Ortega F., Starov V.M., and Miller R., Particle
Laden Fluid Interfaces: Dynamics and Interfacial Rheology, Adv. Colloid Interface Sci., 206, 303-319, 2014.
11. Vittorias I., Lilge D., Baroso V., and Wilhelm M., Linear and Non-Linear Rheology of Linear Polydisperse Polyethylene,Rheol. Acta, 50, 691-700, 2011.
12. Wilhelm M., Fourier-Transform Rheology, Macromol. Mater. Eng., 287, 83-105, 2002.
13. Wilhelm M., Maring D., and Spiess H.W., Fourier-Transform Rheology, Rheol. Acta, 37, 399-405, 1998.
14. Kallus S., Willenbacher N., Kirsch S., Disler D., Neidhöfer T., Wilhelm M., and Spiess H.W., Characterization of Polymer
Dispersions by Fourier Transform Rheology, Rheol. Acta, 40, 552-559, 2001.
15. Wilhelm M., Reinheimer P., Ortseifer M., Neidhöfer T., and Spiess H.W., The Crossover Between Linear and Non-Linear
Mechanical Behaviour in Polymer Solutions as Detected by Fourier-Transform Rheology, Rheol. Acta, 39, 241-246, 2000.
16. Hyun K., Baik E.S., Ahn K.H., Lee S.J., Sugimoto M., and Koyama K., Fourier-Transform Rheology under Me dium Am-
plitude Oscillatory Shear for Linear and Branched Poly mer Melts, J. Rheol., 51, 1319-1342, 2007.
17. Fleury G., Schlatter G., and Muller R., Non-Linear Rhe ol ogy for Long Chain Branching Characterization, Com parison of Two Methodologies: Fourier Transform Rhe ology and Re lax-ation., Rheol. Acta, 44, 174-187, 2004.
18. Debbaut B. and Burhin H., Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyeth-ylene: Experiments and Numerical Simulation, J. Rhe ol., 46, 1155-1176, 2002.
19. Brader J.M., Siebenbürger M., Ballauf M., Reinheimer K., Wilhelm M., Frey S.J., Weysser F., and Fuchs M., Non- Linear
Response of Dense Colloidal Suspensions Under Oscil lato ry Shear: Mode-Coupling Theory and Fourier Trans form
Rhe ol ogy Experiments, Phys. Rev. E, 82, 614-621, 2010.
20. Reinheimer K., Grosso M., Hetzel F., Kübel J., and Wil helm M., Fourier Transform Rheology as an Innovative Morpho-
logical Characterization Technique for the Emulsion Volume Average Radius and Its Disribution, J. Colloid Interface Sci.,
380, 201-212, 2012.