مروری بر فن‌ها و زیست‌جوهرهای زیست‌چاپگرهای سه‌بعدی

نوع مقاله : تالیفی

نویسندگان

1 دانشجو/ دانشگاه اصفهان

2 دانشگاه اصفهان، دانشکده شیمی، گروه شیمی پلیمر

3 هیات علمی/ دانشگاه اصفهان

چکیده

با پیشرفت شگفت ­انگیز دانش پزشکی، تولید یا جایگزینی بافت یا اندام روش طلایی در درمان برخی بیماری ­ها و ضایعات است. فناوری زیست­ چاپ، تحولی در این زمینه ایجاد کرده است. در راستای تکامل این فناوری، توسعه­ چاپگرهای پیشرفته و زیست­ مواد نوین، عامل اثرگذاری بر دستیابی به پیشرفت­ های اخیر است که بخشی از آن مرهون تکرارپذیری و بازساخت داربست با معماری مدنظر است. در این مقاله، تعریف ­های اساسی فناوری زیست­ چاپ سه­ بعدی ارائه شده و عناصر دخیل در موفقیت این فرایند از نقطه ­­نظر دستگاه­ وری و زیست­ مواد استفاده ­شده بررسی می ­شود. در این راستا، ابتدا زیست­ چاپگرهای توسعه ­یافته و سپس، اهمیت هندسه افشانک و ویژگی­ های اساسی زیست ­مواد ایده ­آل، به ­ویژه هیدروژل­ ها، مرور شده است. ویژگی­ های معماری، مکانیکی و زیستی یک داربست، ضروری ­ترین ویژگی یک سازه­ چاپ ­شده بوده و متأثر از ساختار داخلی و جوهر استفاده ­شده است. با توجه به اهمیت زیاد جوهر در فرایند چاپ، روش­های تهیه هیدروژل از دید تشکیل شبکه و اهمیت آن­ها در زمینه طراحی زیست­ مواد کاراتر بررسی شده است. بدیهی است، با آشنایی با عوامل دستگاهی مناسب و پلیمرهایی با خواص ویژه می ­توان چشم ­انداز جالبی را در طراحی داربست­ های زیستی داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on 3D Bioprinting Techniques and Bioinks

نویسندگان [English]

  • Negar Farzanehfar 1
  • mehdi sheikhi 2
  • Fatemeh Rafiemanzelat 3
1 Student/ Isfahan University
3 Faculty/ University of Isfahan
چکیده [English]

With the exciting advancement in medical knowledge, the production or replacement of tissue or organs has the gold standard in the treatment of some diseases and lesions. Bioprinting technology is a breakthrough in this field. In line with the evolution of this technology, the development of advanced printers and new biomaterials are the factors affecting achievement of recent advances, which is partially due to the reproducibility and scaffold regeneration with the intended architecture. In this paper, the basic definitions of the three- dimensional (3D) bioprinting technology and the main elements associated with this technology are reviewed. This review aims are to focus on different technologies developed for the printing of biological species. A brief description of complicated nozzle geometry is followed by introducing common bioinks and the requirements for ideal biomaterials, especially hydrogels as novel candidates and their preparation aspects. Architectural, mechanical and biological properties of a scaffold are the most essential characteristics of a printed structure which are affected by the internal structure and the hydrogel precursor. Since innovation in biomaterials is key to the success of bioprinting, hydrogel preparation methods are fully discussed in terms of network formation. By incorporating proper instrumental parameters and tailoring hydrogel precursors, many benefits can be imparted to the final scaffold, providing design elements for next-generation bioinks.

کلیدواژه‌ها [English]

  • 3D printing
  • Bioinks
  • Bioprinting
  • Hydrogel
  • tissue engineering
1. Lee J.Y., An J., and Chua C.K., Fundamentals and Applications of  3 D Printing  for  Novel  Materials, Appl. Mater. Today,  7, 120-133, 2017.
2. Valot L., Martinez J., Mehdi A., and Subra G., Chemical In sights into Bioinks for 3D Printing, Chem. Soc. Rev.,  48, 
4049-4086, 2019. 
3. Hospodiuk M., Dey M., Sosnoski D., and Ozbolat I.T., The Bioink: A Comprehensive Review on Bioprintable Materials, 
Biotechnol. Adv., 35, 217-239, 2017.
4. Tetsuka H. and Shin S.R., Materials and Technical Innovations in 3D Printing in Biomedical Applications, J. Mater. Chem. B, 8, 2930-2950, 2020.
5. Ozbolat I.T., Moncal K.K., and Gudapati H., Evaluation of Bio printer Technologies, Addit. Manuf., 13, 179-200, 2017.
6. Xu J., Zheng S., Hu X., Li L., Li W., Parungao R., and Song K., Advances in the Research of Bioinks Based on Natural 
Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting, Polymers, 12, 1237, 2020.
7. Parak A., Pradeep P., du Toit L.C., Kumar P., Choonara Y.E., and Pillay V., Functionalizing Bioinks for 3D Bioprinting 
Ap plications, Drug Discov. Today, 24, 198-205, 2019.
8. Akkineni A.R., Ahlfeld T., Lode A., and Gelinsky M., A Ver-sa tile Method for Combining Diferent Biopolymers in a 
Core/Shell Fashion by 3D Plotting to Achieve Mechanically Robus Consructs, Biofabrication, 8, 045001, 2016.
9. Buwald S.J., Boere M., Dijksra P.J., Feijen J., Vermonden T., and Hennink W.E., Hydrogels in a Hisorical Perspec tive: 
From Simple Networks to Smart Materials,  J.  Control. Re lease, 190, 254-273, 2014.
10. Koch L., Gruene M., Unger C., and Chichkov B., Laser Assis-ed Cell Printing, Curr. Pharm. Biotechnol., 14, 91-97, 2013.
11. Jian H., Wang M., Wang S., Wang A., and Bai S., 3D Bio-print ing for Cell Culture and Tissue Fabrication,  Bio-Des. 
Manufact., 1, 45-61, 2018.
12. Chimene D., Lennox K.K., Kaunas R.R., and Gaharwar A.K., Advanced Bioinks for 3D Printing: A Materials Science 
Per spective, Ann. Biomed. Eng., 44, 2090-2102, 2016.
13. Bedell M.L., Navara A.M., Du Y., Zhang S., and Mikos A.G., Polymeric Sysems for Bioprinting, Chem. Rev., 120, 10744-
10792, 2020.
14. Guvendiren M., Molde J., Soares R.M.D., and Kohn J., De signing Biomaterials for 3D Printing, ACS Biomater.  Sci. 
Eng., 2, 1679-1693, 2016.
15. Zhang A.P., Qu X., Soman P., Hribar K.C., Lee J.W., and Chen S.H., Rapid Fabrication of Complex 3D Extracellular 
Microenvironments by Dynamic Optical Projection Stereo-lithography, Adv. Mater., 24, 4266-4270, 2012.
16. Zhang Z., Jin Y., Yin J., Xu C., Xiong R., Chrisensen K., and Huang Y., Evaluation of Bioink Printability for Bioprinting 
Applications, Appl. Phys. Rev., 5, 041304, 2018.
17. Gu Z., Fu J., Lin H., and He Y., Development of 3D Bio print ing: From Printing Methods to Biomedical Applications, Asian J. Pharm. Sci., 15, 529-557, 2019.
18. Rupp H. and Binder W.H., 3D Printing of Core–Shell Capsule Composites for Pos‐Reactive and Damage Sensing Applica-tions, Adv. Mater. Technol., 5, 2000509, 2020.
19. Whitford W.G. and Hoying J.B., A Bioink by any Other Name: Terms, Concepts and Consructions Related to 3D Bioprint-ing, Future Sci., 2, 2016. 
20. Augusine R., Skin Bioprinting: A Novel Approach for Cre ating Artifcial Skin from Synthetic and Natural Building 
Blocks, Prog. Biomater., 7, 77-92, 2018.
21. Shahrubudin N., Lee T.C., and Ramlan R., An Overview on 3D Printing Technology: Technological, Materials, and 
Ap plications, Procedia Manuf., 35, 1286-1296, 2019.
22. Carrow J.K., Kerativitayanan P., Jaiswal M.K., Lokhande G., and Gaharwar A.K., Polymers for Bioprinting, In Essentials 
of 3D Biofabrication and Translation, Academic, Chap. 13, 229-248, 2015.
23. Akhtar M.F., Hanif M., and Ranjha N.M., Methods of Syn the sis of Hydrogels: A Review, Saudi Pharm. J., 24, 554-559, 2016.
24. Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., and Dokmeci M.R., Bioinks for 3D Bioprinting: An Overview, Biomater. Sci., 6, 915-946, 2018.
25. Gurkan U.A., Assal R.E., Yildiz R., and Sung Y., Engineer-ing Anisotropic Biomimetic Fibrocartilage Microenvironment 
by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel 
Drop lets, Mol. Pharm., 11, 2151-2159, 2014.
26. Donderwinkel I., Van Hes J.C., and Cameron N.R., Bio-Inks for 3D Bioprinting: Recent Advances and Future Prospects, 
Polym. Chem., 8, 4451-4471, 2017.
27. Fedorovich N.E., DeWijn J.R., Verbout A.J., Alblas J., and Dhert W.J., Three-Dimensional Fiber Deposition of Cell-  
Laden, Viable, Patterned Consructs for Bone Tissue Printing, Tissue Eng., 14, 127-133, 2008.
28. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., and Hui D., Additive Manufacturing (3D Printing): A Review of 
Ma terials, Methods, Applications and Challenges, Compos. B: Eng., 143, 172-196, 2018.
29. Mota C., Camarero-Espinosa S., Baker M.B., Wieringa P., and Moroni L., Bioprinting: From Tissue and Organ Development to In Vitro Models, Chem. Rev., 120, 10547-10607, 2020.
30. Tan E.Y., Suntornnond R., and Yeong W.Y., High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hy-
drogels via Model-Support Bioink Interaction, 3D Print Addit. Manuf., 8, 69-78. 2021.
31. Hu T., Cui X., Zhu M., Wu M., Tian Y., Yao B., and Fu X., 3D-Printable Supramolecular Hydrogels with Shear-Thin ning 
Property: Fabricating Strength Tunable Bioink via Dual Crosslinking, Bioact. Mater., 5, 808-818, 2020.
32. Hoch E., Hirth T., Tovar G.E., and Borchers K., Chemi cal Tai loring of Gelatin to Adjus Its Chemical and Physical 
Prop erties for Functional Bioprinting, J. Mater. Chem. B, 1, 5675-5685, 2013.
33. Aldana A.A., Valente F., Dilley R., and Doyle B., Develop ment of 3D Bioprinted Gelma-Alginate Hydrogels with Tunable 
Mechanical Properties, Bioprinting, 21, e00105, 2021. 
34. Shin J.Y., Yeo Y.H., Jeong J.E., Park S.A., and Park W.H., Du al- Crosslinked Methylcellulose Hydrogels for 3D Bio print-
ing Applications, Carbohyd. Polym., 238, 116192, 2020