مروری بر سینتیک تخریب نانوکامپوزیت‌های اپوکسی دارای نانوذرات خاک رس

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسالمی، واحد تهران جنوب

2 گروه مهندسی پلیمر دانشگاه آزاد اسلامی واحد تهران جنوب

چکیده

مطالعه تخریب نانوکامپوزیت ­های اپوکسی بسیار مهم است، زیرا می­ تواند محدوده دمایی و طول عمر سامانه را مشخص کند. مدل­ سازی سینتیک تخریب به­ طور گسترده به ابزاری اساسی برای مهندسان تبدیل شده است که دوام گرمایی مواد را پیش از به­ کارگیری در صنعت پیش­ بینی می­ کند. این کار به کاهش هزینه­ ها و توسعه محصول، هزینه ساخت و زمان و ارتقای کیفیت محصول طراحی­ شده، منجر می ­شود. پراکنش و توزیع نانوذرات خاک رس در ماتریس رزین اپوکسی دو عامل مهم اثرگذار بر خواص فیزیکی و مکانیکی نانوکامپوزیت ­های اپوکسی هستند. همچنین، خواص سدی نانوذرات خاک رس یا سیلیکات لایه­ ای در برابر هیدروژن، اکسیژن و نوع ساختار آن­ می ­تواند باعث پایداری گرمایی رزین اپوکسی شود. اصلاح سطح نانوذرات خاک رس می ­تواند باعث تأخیر در واکنش تخریب نانوکامپوزیت ­های اپوکسی شود. درصد افزودن نانوذرات خاک رس به ماتریس رزین اپوکسی و نوع فرایند تولید آن، دو عامل مهم در بررسی سینتیک تخریب رزین اپوکسی با وجود نانوذرات خاک رس هستند. در این مقاله، اثر نانوذرات خاک رس اصلاح­ شده و نشده بر سینتیک تخریب رزین اپوکسی و مدل­ های متفاوت سینتیک تخریب، انرژی فعال­سازی واکنش تخریب، تجزیه گرماوزن­ سنجی و درصد کاهش وزن بررسی و اثر انواع متفاوت نانوذرات خاک رس بر سینتیک تخریب رزین اپوکسی مرور شده است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Degradation Kinetics of Epoxy Nanocomposites in the Presence of Clay Nanoparticles: A Review

نویسندگان [English]

  • Mohammadreza Kalaee 1
  • Mohammadhossein Karami 2
1 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Polymer Engineering, Islamic Azad University, South Tehran Branch
چکیده [English]

The sudy of degradation kinetics of epoxy nanocomposites is very important because it can determine the temperature range and service life of the sysem. Degradation kinetics modeling has become widely used as an essential tool for engineers to predict the thermal durability of materials before their usage in indusry, leading to reduced coss and product development, manufacturing coss, time and quality of the designed product. Dispersion and disribution of clay nanoparticles in epoxy resin matrix are two important factors in the physical and mechanical properties of epoxy nanocomposites. Also, the inhibitory properties of clay nanoparticles or layered silicates agains hydrogen and oxygen, as well as the type of sructure can cause thermal sability of epoxy resin. Surface modifcation of the clay nanoparticles could play a delaying role in the degradation reaction of epoxy nanocomposites. The content of the added clay nanoparticles and the type of production process  are two important factors in invesigating the degradation kinetics of epoxy resin in the presence of clay nanoparticles. In this paper, the efect of modifed and unmodifed clay nanoparticles on the degradation kinetics of epoxy resin and diferent models of degradation kinetics, activation energy, thermogravimetric analysis and weight loss percentage and the efect of diferent types of clay nanoparticles on the degradation kinetics of epoxy resin are reviewed.

کلیدواژه‌ها [English]

  • clay nanoparticles
  • modifed clay nanoparticles
  • epoxy resin
  • degradation kinetics
  • modeling
1. Ahmadi Z., Epoxy in Nanotechnology: A Short Review, Prog. Org. Coat, 132, 445-448, 2019. 
2. Ray S.S., and  Okamoto M., Polymer/Layered  Silicate Nanocomposites: A Review from Preparation to Processing, 
Prog.  Org.  Coat.,  28, 1539-1641, 2003. 
3. Zeng Q.H., Yu A.B., Lu G.Q.,  and  Paul D.R., Clay-Based Polymer Nanocomposites: Research and Commercial 
Development, J. Nanosci. Nanotechnol., 5, 1574-1592, 2005.
4. Gao F., Clay/Polymer Composites: Research and Commercial Development, Mater. Today, 7, 50-55, 2004.
5. Hussain F., Hojjati M., Okamoto M., and Gorga R.E., Review Article: Polymer-Matrix  Nanocomposites, Processing, 
Manufacturing, and  Application:  An  Overview,  J. Compos. Mater.,  40, 1511-1575, 2006.
6. Martino L., Guigo N., van Berkel J.G., and Sbirrazzuoli N., Infuence of Organically Modifed Montmorillonite and 
Sepiolite Clays on the Physical Properties of Bio-Based Poly(ethylene 2,5-furandicarboxylate), Compos. B: Eng., 110, 
96-105, 2017.
7. Carfato P., Incarnato L., Di Maio L., Dittrich B., and Schartel B., Infuence of a Novel Organo-silylated Clay on the 
Morphology, Thermal and Burning Behavior of Low Density Polyethylene Composites,  Compos. B: Eng.,  98, 444-452, 
2016.
8. Guo B., Jia D., and Cai C., Efects of Organo-Montmorillonite Dispersion on Thermal Stability of Epoxy Resin 
Nanocomposites,  Eur. Polym. J.,  40, 1743-1748, 2004.
9. Nassaj Z.,  Ravari F.,  Danaee I., and  Ehsani M., Thermal Stability, Degradation Kinetic and Electrical  Properties Studies 
of  Decorated  Graphene  Oxide  with  CeO2 Nanoparticles-Reinforced Epoxy Coatings,  Fuller. Nanotub. Car. N.,  29, 
446-456, 2021.
10. Vyazovkin S., Burnham A.K., Criado J.M., Maqueda L.A.P., Popescu C., and Sbirrazzuoli N., Ictac Kinetics Committee 
Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520, 1-19, 2011.11. Khawam A. and Flanagan D., Complementary Use of Model-Free and Modelisic Methods in the Analysis of Solid-State 
Kinetics, J. Phys. Chem., 109, 10073-10080, 2005.
12. Becker O., Varley R.J., and Simon G.P., Thermal Stability and Water Uptake of High Performance Epoxy Layered Silicate 
Nanocomposites, Eur. Polym. J., 40, 187-195, 2004.
13. Ranta D., Epoxy Composites: Impact Resisance and Flame Retardency.,   Humphreys S., (Ed.( Smithers  Rapra,  UK, 
1-126, 2005. 
14. Sperling L.H.,  Interpenetrating  Polymer  Networks: An Overview.,  Klempner D. and Utracki L.A. (Eds.), ACS, New 
York, 3-38, 1994. 
15. Zabihi O., Ahmadi M., and Naebe M., Self-assembly of Quaternized Chitosan Nanoparticles within Nanoclay Layers 
for Enhancement of Interfacial Properties in Toughened Polymer Nanocomposites, Mater. Design, 119, 277-289, 2017.
16. Sahoo S.K., Mohanty S., and Nayak S.K., Study of Thermal Stability and Thermo-Mechanical Behavior of Functionalized Soybean Oil Modifed Toughened Epoxy/organo Clay Nanocomposite,  Prog. Org. Coat.,  88, 263-271, 2015.
17. Saad G.R., Elhamid E.E.A., and Elmenyawy S.A., Dynamic Cure Kinetics and Thermal Degradation of Brominated Epoxy 
Resin-organoclay Based Nanocomposites, Thermochim. Acta, 524, 186-193, 2011.
18. Mohan T.P., Ramesh K.M., and Velmurugan R., Thermal, Mechanical and Vibration Characterisics of Epoxy-Clay 
Nanocomposites,  J. Mater. Sci.,  41, 5915-5925, 2006.
19. Seidi F., Jouyandeh M., Akbari V., Paran S.M.R., Livi S., Ducos F., Vahabi H. et al., Super‐Crosslinked Ionic Liquid‐
intercalated Montmorillonite/Epoxy Nanocomposites: Cure Kinetics, Viscoelasic Behavior and Thermal Degradation 
Mechanism,  Polym. Eng.,  60, 1940-1957, 2020.
20. Carrasco F. and Pagès P., Thermal Degradation and Stability of Epoxy Nanocomposites: Infuence of Montmorillonite 
Content and Cure Temperature, Polym. Degrad. Stabil.,  93, 1000-1007, 2008.
21. Dzuhri S., Yuhana N.Y., and  Khairulazfar M., Thermal Stability and Decomposition Study of Epoxy/Clay Nanocomposites, Sains Malays., 44, 441-448, 2015.
22. Brnardić I., Macan J., Ivankovieć H., and Ivanković M., Thermal Degradation Kinetics of Epoxy/Organically Modifed 
Montmorillonite Nanocomposites, J. Appl. Polym. Sci., 107, 1932-1938, 2008.
23. Rahatekar S.S., Zammarano M., Matko S., Koziol K.K., Windle A.H., Nyden M., Kashiwagi T. et al., Efect of Carbon 
Nanotubes and Montmorillonite on the Flammability of Epoxy Nanocomposites, Polym. Degrad. Stabil., 95, 870-879, 2010.
24. Lakshmi M.S., Narmadha B., and Reddy B.S.R., Enhanced Thermal Stability and Structural Characterisics of Diferent 
Mmt-Clay/Epoxy-Nanocomposite Materials, Polym. Degrad. Stabil., 93, 201-213, 2008.
25. Zotti A., Borriello A., Ricciardi M., Antonucci V., Giordano M., and Zarrelli M., Efects of Sepiolite Clay on Degradation 
and Fire Behaviour of a Bisphenol A-Based Epoxy, Compos. Part B, 73, 139-148, 2015.
26. Xia L., Xiong J., Shentu B., and Weng Z., Thermal-Oxidative Degradation and Accelerated Aging Behavior of Polyamide 6/Epoxy Resin-Modifed Montmorillonite Nanocomposites,  J. Appl. Polym. Sci., 131, 19, 2014.
27. Geyer B., Hundshammer T., Röhner S., Lorenz G., and Kandelbauer A., Predicting Thermal and Thermo-
oxidative Stability of Silane-modifed Clay Minerals Using Thermogravimetry and Isoconversional Kinetic Analysis, 
Appl. Clay Sci.,  101, 253-259, 2014.
28. Chang L.N., Jaafar M., and Chow W.S., Thermal Behavior and Flammability of Epoxy/glass Fiber Composites Containing Clay and Decabromodiphenyl Oxide,  J. Therm. Anal.,  112, 1157-1164, 2013.
29. Kalaee M.R., Akhlaghia S., Nourib A., Mazinani S., Mortezaei M., Afshari M., Mosafanezhad et al., Efect of Nano-sized 
Calcium Carbonate on Cure Kinetics and Properties of Polyeser/Epoxy Blend Powder Coatings, Prog. Org. Coat., 
71, 173-180, 2011.
30. Kotsilkova R., Petkova V., and Pelovski Y., Thermal Analysis of Polymer-silicate Nanocomposites, J. Therm. Anal., 64, 591-598 , 2001.
31. Qin H., Zhang S., Zhao C., Hu G., and Yang M., Flame Retardant Mechanism of Polymer/Clay Nanocomposites 
Based on Polypropylene,  Polym. J.,  46, 8386-8395, 2005.
32. Toldy A., Anna P., Csontos I., Szabo A., and Marosi G., Intrinsically Flame Retardant Epoxy Resin-Fire Performance 
and Background: Part I,  Polym. Degrad. Stabil.,  92, 2223-2230, 2008.
33. Camino G., Tartaglione G., Frache A., Manferti C., and Cosa G., Thermal and Combusion Behaviour of Layered Silicate 
Epoxy Nanocomposites, Polym. Degrad. Stabil., 90, 354-362, 2005.
34. Starink M.J., The Determination of Activation Energy From Linear Heating Rate Experiments: A Comparison of the 
Accuracy of Isoconversion Methods, Thermochim. Acta, 404, 163-176, 2003.
35. Seo K.S. and Kim D.S., Curing Behavior and Structure of An Epoxy/Clay Nanocomposite Sysem,  Polym. Eng. Sci.,  46, 
1318-1325, 2006.
36. Vyazovkin S., Some Confusion Concerning Integral Isoconversional Methods that may Result from the Paper 
by Budrugeac and Segal Some Methodological Problems Concerning Nonisothermal Kinetic Analysis of HeterogeneousSolid-Gas Reactions, Int. J. Chem. Kinet., 34, 418-420, 2002.
37. Vyazovkin S., Modifcation of the Integral Isoconversional Method to Account for Variation inthe Activation Energy, J. 
Comput. Chem.,  22, 178-183, 2001.
38. Vyazovkin S., Isoconversional Kinetic Analysis of Thermally Stimulated Processes in Polymers,  Macromol. Rapid. 
Commun.,  27, 1515, 2006.
39. Vyazovkin S., Isoconversional Method to Explore the Mechanism and Kinetics of Multi-sep Epoxy Cures, Macromol. 
Rapid. Commun.,  20, 387-389, 1999.
40. Mohan T.P., Ramesh K.M., and Velmurugan R., Thermal, Mechanical and Vibration Characterisics of Epoxy-Clay 
Nanocomposites,  J. Mater. Sci.,  41, 5915-5925, 2006.
41. Seidi F., Jouyandeh M., Akbari V., Paran S.M.R., Livi S., Ducos F., Vahabi H. et al., Super‐crosslinked Ionic Liquid‐
intercalated Montmorillonite/Epoxy Nanocomposites: Cure Kinetics, Viscoelasic Behavior and Thermal Degradation 
Mechanism,  Polym. Eng.,  60, 1940-1957, 2020.
42. Carrasco F. and Pagès P., Thermal Degradation and Stability of Epoxy Nanocomposites: Infuence of Montmorillonite 
Content and Cure Temperature, Polym. Degrad. Stabil.,  93, 1000-1007, 2008.
43. Dzuhri S., Yuhana N.Y., and Khairulazfar M., Thermal Stability and Decomposition Study of Epoxy/Clay Nanocomposites, Sains Malays., 44, 441-448, 2015.
44. Brnardić I., Macan J., Ivankovieć H., and Ivanković M., Thermal Degradation Kinetics of Epoxy/Organically Modifed 
Montmorillonite Nanocomposites, J. Appl. Polym. Sci., 107, 1932-1938,  2008.
45. Seidi F., Jouyandeh M., Akbari V., Paran S.M.R., Livi S., Ducos F., Vahabi H. et al., Super‐crosslinked Ionic Liquid‐
intercalated Montmorillonite/Epoxy Nanocomposites: Cure Kinetics, Viscoelasic Behavior and Thermal Degradation 
Mechanism,  Polym. Eng.,  60, 1940-1957, 2020.
46. Zabihi O., Khayyam H., Fox B.L., and Naebe M., Enhanced Thermal Stability and Lifetime of Epoxy Nanocomposites 
Using Covalently Functionalized Clay: Experimental and Modelling,  New J. Chem.,  39, 2269-2278, 2015.
47. Karami M.H. and Kalaee M.R., Review of Curing Kinetics of Epoxy Nanocomposites in the Presence of Iron Oxide 
Nanoparticles,  Basparesh (Persian),  11, 34-43, 2021, doi:10.22063/BASPARESH.2021.2824.1537
48. Málek J., The Kinetic Analysis of Non-Isothermal Data, Thermochim. Acta.,  200, 257-269, 1992.
49. Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Luis A., Maqueda P. et al., ICTAC Kinetics 
Committee Recommendations for Analysis of Multi-sep Kinetics,  Thermochim. Acta,  689, 178597, 2020.
50. Karami M.H., Kalaee M.R., Mazinani S., Martínez V.G., Wellen R.M.R., Shanmugharaj A.M. et al., Isoconversional Model 
Approach and Cure Kinetics of Epoxy/NBR Nanocomposites, Proceeding of the 14th International Seminar on Polymer 
Science and Technology (ISPST 2020), Tarbiat Modares University, 9-10,  2020.
51. Karami M.H. and Kalaee M.R., Curing of Epoxy/UFNBRP Nano Composites Using Calorimetric Method, Proceeding of 
the 11th International Chemical Engineering Congress and Exhibition (IChEC 2020), Tehran University, 15-17, 2020.
52. Karami M.H., Kalaee M.R., and Mazinani S., Chemorheology of Nano Acrylonitrile Butadiene Rubber (n-NBR)/Epoxy 
Nanocomposites, Proceeding of the 1s International Conference on Rheology (ICOR), Iran Polymer and Petrochemical Insitute, 104-105, 2019.
53. Karami M.H. and Kalaee M.R., A Review of the Applications of Cross-linked Elasomeric Nanoparticles, Iran Rubber Mag. (Persian), 25, 37-56, 2021. 
54. Karami M.H. and Kalaee M.R., A Review of the Curing Kinetics of Epoxy Nanocomposites/ Nanoclay,  Iran Polym. 
Technol., Res. Devel. (Persian),  6, 29-38, 2021.
55. Karami M.H. and Kalaee M.R., Modeling of Curing Kinetics of Epoxy Nanocomposites by Time Sweep Method, Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Insitute, 234-241, 2021.
56. Karami M.H. and Kalaee M.R., Chemorheology of Epoxy Nanocomposites in the Presence of Elasomeric Nanoparticles, Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif 
Energy Research Insitute, 209-216, 202