کاربرد پلی‌یورتان در سامانه دارورسانی

نوع مقاله : تالیفی

نویسندگان

1 هیات علمی دانشگاه شیراز

2 دانشجو، بخش شیمی، دانشکده علوم، دانشگاه شیراز

چکیده

موضوع دارورسانی، حوزه پژوهشی درخور توجه است، زیرا سالانه زندگی میلیون ­ها بیمار را تحت تأثیر قرار می ­دهد. هرچند، عوامل دارویی را می ­توان با روش ­های مختلف تجویز کرد. اثربخشی سامانه دارورسانی به ­طور مستقیم با روش تجویز آن ارتباط دارد. پلی ­یورتان­ ها از مهم­ترین دسته­ های پلیمر هستند که به­ دلیل سازگاری استثنائی، خواص مکانیکی و قابلیت انعطاف­ پذیری، نقش اساسی در توسعه بسیاری از وسایل مختلف زیست­ پزشکی دارند. پلی ­یورتان­ ها با واکنش ایزوسیانات ­ها و دی ­ال ­ها برای تولید پلیمرهایی با پیوند یورتان (-NH-COO-) در زنجیر اصلی آن­ها تشکیل می شوند و این پیوند مشابه پیوندهای پپتیدی در ساختار پروتئین­ هاست. همچنین به ­دلیل این شباهت، آن­ها به­ عنوان بخشی از بدن انسان مانند غشای دیالیز، بالن ­های درون آئورت، دریچه ­های قلب، داربست ­های موقت و کاشت سینه استفاده شده ­اند. انواع زیادی از قطعه ­های ساختاری پلی­ یورتان در دسترس است که موجب می ­شود تا خواص شیمیایی و فیزیکی این پلیمرها متناسب با کاربردهای هدف آ­ن­ها، به ­ویژه در زمینه ­های پزشکی و دارویی، تغییر کند. در این مقاله، سنتز و خواص پلی ­یورتان، ساختار، پایداری گرمایی، سختی، مقاومت به حلال، دارورسانی، خواص مکانیکی و همچنین زیست­ تخریب ­پذیری و زیست­ سازگاری آن با تأکید ویژه بر کاربرد این پلیمر در دارورسانی واپاییده و تحویل به بافت هدف، بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Polyurethane in Drug Delivery System

نویسندگان [English]

  • Soheila Ghasemi 1
  • Milad Ghezelsofloo 2
1 Faculty of Shiraz University
2 Student, Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran
چکیده [English]

The feld of drug delivery is a very hot research area as it afects the life of millions of patients every year. Although pharmaceutical agents can be adminisrated in diferent ways, the efectiveness of certain drug delivery sysem (DDS) is directly related to the method of their adminisration. Polyurethanes are one of the mos important classes of polymers, that play an essential role in the development of many diferent biomedical devices due to their exceptional compatibility, mechanical properties and fexibility. Polyurethanes are formed by the reaction reviewed of isocyanates and diols to produce urethane-bonded polymers (-NH-COO-) in their main chain, which is similar to the peptide bonds in the sructure of proteins. Because of this similarity, they have also been used as part of the human body, such as dialysis membranes, intra-aortic balloons, heart valves, temporary scafolds and breas implants. There are many types of polyurethane sructural blocks available that allow the chemical and physical properties of polyurethane to be tailored 
to their intended applications, especially in the medical and pharmaceutical felds. In this paper, the synthesis and properties of polyurethane, sructure, thermal sability, hardness, solvent resisance, drug delivery, mechanical properties as well as biodegradability and biocompatibility with special emphasis on the application of the polymer in controlled 
release of drugs and delivery to the target tissue were.

کلیدواژه‌ها [English]

  • polyurethane
  • biocompatibility
  • biodegradability
  • drug delivery
  • Intelligent delivery system
1. Abu-Thabit N.Y. and Makhlouf A.S.H., Hisorical Development of Drug Delivery Sysems: from Conventional Macroscale to Controlled, Targeted, and Responsive Nanoscale Sysems, In Stimuli Responsive Polymeric Nanocarriers for Drug 
De liv ery Applications, Woodhead, 1, 3-41, 2018.
2. Khoee S. and Moayeri S., Catalytic Self-Propelled Nano/Micro-motors. I. Principles, and Geometry Design, Polymerization (Persian), 10, 31-43, 2021.
3. Khoee S. and Kardani M., Hydrogels as Controlled Drug De liv ery Carriers, Polymerization (Persian), 2, 16-27, 2013.
4. Ionescu M., Chemisry and Technology of Polyols for Polyure-thanes, iSmithers Rapra, UK, 1-605, 2005.
5. Krol P., Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applica-
tions of Linear Polyurethanes in Polyurethane Elasomers, Co-polymers and Ionomers, Prog. Mater. Sci., 52, 915-1015, 2007.
6. Abdollahi Baghban S. and Khorasani M., Flexible Acousic Polyurethane Foam: An Overview of Physical Structure and 
Chemical Properties,  Polymerization (Persian),  8, 90-100, 2018.
7. Guelcher S.A., Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine, Tissue. Eng. Part B: 
Rev., 14, 3-17, 2008.
8. Mousavi S.K., Shokrolahi F., Farahmandghavi F., and Shok-rollahi P., Antibacterial Polyurethanes in Biomedical Applica-
tions, Polymerization (Persian), 7, 3-15, 2017.
9. Cherng J.Y., Hou T.Y., Shih M.F., Talsma H., and Hennink W.E., Polyurethane-Based Drug Delivery Sysems,  Int. J. Pharm., 
450, 145-162, 2013.
10. Vermette P., Griesser H.J., Laroche G., and Guidoin R., Bio medical Applications of Polyurethanes, Landes 
Bios ci ence, USA, 1-284, 2001.
11. Davis F.J. and Geofrey R.M., Polyurethane Based Materials with Applications in Medical Devices, In Biomaterials and 
Prototyping Applications in Medicine, Springer, Boson, 27-48, 2008.
12. Versraete G., Van Renterghem R., Van Bocksal P.J., Kasmi S., De Gees B.G., De Beer T., Remon J.P., and Vervaet C., ydrophilic Thermoplasic Polyurethanes for the Manufactur-ing of Highly Dosed Oral Susained Release Matrices via Hot 
Melt Extrusion and Injection Molding,  Int. J. Pharm.,  506, 214-221, 2016.
13. Shoaib M., Bahadur A., Iqbal S., Rahman M.S.U., Ahmed S., Shabir G., and Javaid M.A., Relationship of Hard Seg ment 
Concentration in Polyurethane-Urea Elasomers with Me chan ical, Thermal and Drug Release Properties, J. Drug. 
Deliv. Sci. Technol., 37, 88-96, 2017.
14. Shoaib M., Bahadur A., Saeed A., Rahman M.S., and Naseer M.M., Biocompatible, pH-Responsive, and Biodegradable 
Polyurethanes as Smart Anti-Cancer Drug Delivery Carriers, React. Funct. Polym., 127, 153-160, 2018.
15. Duru Kamac U. and Kamac M., Preparation of Polyvinyl Al cohol, Chitosan and Polyurethane-Based pH-sensitive 
and Biodegradable Hydrogels for Controlled Drug Release  Applications, Int. J. Polym. Mater. Polym. Biomater.,  18, 
1167-1177, 2020.
16. Kamaci M., Polyurethane-Based Hydrogels for Controlled Drug Delivery Applications,  Eur. Polym. J.,  123, 109-444, 
2020.
17. Molina G.A., Elizalde-Mata A., Hernández-Martínez A.R., Fonseca G., Cruz Soto M., Rodríguez-Morales A.L., and        
Esevez M., Synthesis and Characterization of Inulin-Based Responsive Polyurethanes for Breas Cancer Applications, 
Polymer, 12, 1-23, 2020.
18. Saha K., Dutta K., Basu A., Adhikari A., Chattopadhyay D., and Sarkar P., Controlled Delivery of Tetracycline Hydro-
chloride Intercalated into Smectite Clay Using Polyurethane Nanofbrous Membrane for Wound Healing Application,      
Nano-Struct Nano-Objects, 21, 100-418, 2020.
19. Qi D., Wang J., Qi Y., Wen J., Wei S., Liu D., and Yu S., One Pot Preparation of Polyurethane-Based GSH-Responsive 
Core-Shell Nanogels for Controlled Drug Delivery,  J. Appl. Polym. Sci., 137, 48473, 2020.
20. Salahuddin N., Rehab A., and Abd-Elghany S., In Vitro  Thermo-Triggered Drug Release from Magnetic Polyurethane-Urea Nanocomposite,  J. Drug. Deliv. Sci. Tec.,  56, 101564, 2020.
21. Zanetti-Ramos B.G., Lemos-Senna E., Soldi V., Borsali R., Cloutet E., and Cramail H., Polyurethane Nanoparticles from 
a Natural Polyol via Miniemulsion Technique, Polymer, 47, 8080-8087, 2006.
22. Chambon P., Cloutet E., Cramail H., Tassaing T., and Besnard M., Synthesis of Core-Shell Polyurethane–Polydimethylsi-
loxane Particles in Cyclohexane and in Supercritical Carbon Dioxide Used as Dispersant Media: A Comparative Invesiga-
tion, Polymer, 46, 1057-1066, 2005.
23. Wang A., Gao H., Sun Y., Sun Y.L., Yang Y. W., Wu G., and Ma J., Temperature-and pH-Responsive Nanoparticles of          Biocompatible Polyurethanes for Doxorubicin Delivery,  Int. J. Pharm., 441, 30-39, 2013.
24. Zhang J., Wu M., Yang J., Wu Q., and Jin Z., Anionic Poly(lactic acid)-Polyurethane Micelles as Potential Biodegradable Drug Delivery Carriers, Colloids Surf. A: Physicochem. Eng. Asp., 337, 200-204, 2009.
25. Lin X., Tang D., Gu S., Du H., and Jiang E., Electrospun Poly(N-isopropylacrylamide)/Poly(caprolactone)-Based 
Polyurethane Nanofbers as Drug Carriers and Temperature-Controlled Release, New. J. Chem., 37, 2433-2439, 2013.
26. Saha K., Butola B.S., and Joshi M., Drug-Loaded Polyure-thane/Clay Nanocomposite Nanofbers for Topical Drug-       
Delivery Application, J. Appl. Polym. Sci., 131, 1-9, 2014.
27. Yu S., He C., Lv Q., Sun H., and Chen X., pH and Reduction Dual Responsive Cross-Linked Polyurethane Micelles as an    Intracellular Drug Delivery Sysem, Rsc. Adv., 4, 63070-63078, 2014.
28.  Huynh T.T.N., Padois K., Sonvico F., Rossi A., Zani F., Pirot F., and Falson F., Characterization of a Polyurethane-Based 
Controlled Release Sysem for Local Delivery of Chlorhexi-dine Diacetate, Eur. J. Pharm. Biopharm., 74, 255-264, 2010.
29. Claeys B., Vervaeck A., Hillewaere X.K., Possemiers S., Hansen L., De Beer T., and Vervaet C., Thermoplasic       
Polyurethanes for the Manufacturing of Highly Dosed Oral Susained Release Matrices via Hot Melt Extrusion and        
Injection Molding, Eur. J. Pharm. Biopharm.,  90, 44-52, 2015.
30. Kohjiya S., Ikeda Y., Takesako S., and Yamashita S., Drug Release Behavior from Polyurethane Gel, React. Polym., 15, 
165-175 , 1991.