1. Abu-Thabit N.Y. and Makhlouf A.S.H., Hisorical Development of Drug Delivery Sysems: from Conventional Macroscale to Controlled, Targeted, and Responsive Nanoscale Sysems, In Stimuli Responsive Polymeric Nanocarriers for Drug
De liv ery Applications, Woodhead, 1, 3-41, 2018.
2. Khoee S. and Moayeri S., Catalytic Self-Propelled Nano/Micro-motors. I. Principles, and Geometry Design, Polymerization (Persian), 10, 31-43, 2021.
3. Khoee S. and Kardani M., Hydrogels as Controlled Drug De liv ery Carriers, Polymerization (Persian), 2, 16-27, 2013.
4. Ionescu M., Chemisry and Technology of Polyols for Polyure-thanes, iSmithers Rapra, UK, 1-605, 2005.
5. Krol P., Synthesis Methods, Chemical Structures and Phase Structures of Linear Polyurethanes. Properties and Applica-
tions of Linear Polyurethanes in Polyurethane Elasomers, Co-polymers and Ionomers, Prog. Mater. Sci., 52, 915-1015, 2007.
6. Abdollahi Baghban S. and Khorasani M., Flexible Acousic Polyurethane Foam: An Overview of Physical Structure and
Chemical Properties, Polymerization (Persian), 8, 90-100, 2018.
7. Guelcher S.A., Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine, Tissue. Eng. Part B:
Rev., 14, 3-17, 2008.
8. Mousavi S.K., Shokrolahi F., Farahmandghavi F., and Shok-rollahi P., Antibacterial Polyurethanes in Biomedical Applica-
tions, Polymerization (Persian), 7, 3-15, 2017.
9. Cherng J.Y., Hou T.Y., Shih M.F., Talsma H., and Hennink W.E., Polyurethane-Based Drug Delivery Sysems, Int. J. Pharm.,
450, 145-162, 2013.
10. Vermette P., Griesser H.J., Laroche G., and Guidoin R., Bio medical Applications of Polyurethanes, Landes
Bios ci ence, USA, 1-284, 2001.
11. Davis F.J. and Geofrey R.M., Polyurethane Based Materials with Applications in Medical Devices, In Biomaterials and
Prototyping Applications in Medicine, Springer, Boson, 27-48, 2008.
12. Versraete G., Van Renterghem R., Van Bocksal P.J., Kasmi S., De Gees B.G., De Beer T., Remon J.P., and Vervaet C., ydrophilic Thermoplasic Polyurethanes for the Manufactur-ing of Highly Dosed Oral Susained Release Matrices via Hot
Melt Extrusion and Injection Molding, Int. J. Pharm., 506, 214-221, 2016.
13. Shoaib M., Bahadur A., Iqbal S., Rahman M.S.U., Ahmed S., Shabir G., and Javaid M.A., Relationship of Hard Seg ment
Concentration in Polyurethane-Urea Elasomers with Me chan ical, Thermal and Drug Release Properties, J. Drug.
Deliv. Sci. Technol., 37, 88-96, 2017.
14. Shoaib M., Bahadur A., Saeed A., Rahman M.S., and Naseer M.M., Biocompatible, pH-Responsive, and Biodegradable
Polyurethanes as Smart Anti-Cancer Drug Delivery Carriers, React. Funct. Polym., 127, 153-160, 2018.
15. Duru Kamac U. and Kamac M., Preparation of Polyvinyl Al cohol, Chitosan and Polyurethane-Based pH-sensitive
and Biodegradable Hydrogels for Controlled Drug Release Applications, Int. J. Polym. Mater. Polym. Biomater., 18,
1167-1177, 2020.
16. Kamaci M., Polyurethane-Based Hydrogels for Controlled Drug Delivery Applications, Eur. Polym. J., 123, 109-444,
2020.
17. Molina G.A., Elizalde-Mata A., Hernández-Martínez A.R., Fonseca G., Cruz Soto M., Rodríguez-Morales A.L., and
Esevez M., Synthesis and Characterization of Inulin-Based Responsive Polyurethanes for Breas Cancer Applications,
Polymer, 12, 1-23, 2020.
18. Saha K., Dutta K., Basu A., Adhikari A., Chattopadhyay D., and Sarkar P., Controlled Delivery of Tetracycline Hydro-
chloride Intercalated into Smectite Clay Using Polyurethane Nanofbrous Membrane for Wound Healing Application,
Nano-Struct Nano-Objects, 21, 100-418, 2020.
19. Qi D., Wang J., Qi Y., Wen J., Wei S., Liu D., and Yu S., One Pot Preparation of Polyurethane-Based GSH-Responsive
Core-Shell Nanogels for Controlled Drug Delivery, J. Appl. Polym. Sci., 137, 48473, 2020.
20. Salahuddin N., Rehab A., and Abd-Elghany S., In Vitro Thermo-Triggered Drug Release from Magnetic Polyurethane-Urea Nanocomposite, J. Drug. Deliv. Sci. Tec., 56, 101564, 2020.
21. Zanetti-Ramos B.G., Lemos-Senna E., Soldi V., Borsali R., Cloutet E., and Cramail H., Polyurethane Nanoparticles from
a Natural Polyol via Miniemulsion Technique, Polymer, 47, 8080-8087, 2006.
22. Chambon P., Cloutet E., Cramail H., Tassaing T., and Besnard M., Synthesis of Core-Shell Polyurethane–Polydimethylsi-
loxane Particles in Cyclohexane and in Supercritical Carbon Dioxide Used as Dispersant Media: A Comparative Invesiga-
tion, Polymer, 46, 1057-1066, 2005.
23. Wang A., Gao H., Sun Y., Sun Y.L., Yang Y. W., Wu G., and Ma J., Temperature-and pH-Responsive Nanoparticles of Biocompatible Polyurethanes for Doxorubicin Delivery, Int. J. Pharm., 441, 30-39, 2013.
24. Zhang J., Wu M., Yang J., Wu Q., and Jin Z., Anionic Poly(lactic acid)-Polyurethane Micelles as Potential Biodegradable Drug Delivery Carriers, Colloids Surf. A: Physicochem. Eng. Asp., 337, 200-204, 2009.
25. Lin X., Tang D., Gu S., Du H., and Jiang E., Electrospun Poly(N-isopropylacrylamide)/Poly(caprolactone)-Based
Polyurethane Nanofbers as Drug Carriers and Temperature-Controlled Release, New. J. Chem., 37, 2433-2439, 2013.
26. Saha K., Butola B.S., and Joshi M., Drug-Loaded Polyure-thane/Clay Nanocomposite Nanofbers for Topical Drug-
Delivery Application, J. Appl. Polym. Sci., 131, 1-9, 2014.
27. Yu S., He C., Lv Q., Sun H., and Chen X., pH and Reduction Dual Responsive Cross-Linked Polyurethane Micelles as an Intracellular Drug Delivery Sysem, Rsc. Adv., 4, 63070-63078, 2014.
28. Huynh T.T.N., Padois K., Sonvico F., Rossi A., Zani F., Pirot F., and Falson F., Characterization of a Polyurethane-Based
Controlled Release Sysem for Local Delivery of Chlorhexi-dine Diacetate, Eur. J. Pharm. Biopharm., 74, 255-264, 2010.
29. Claeys B., Vervaeck A., Hillewaere X.K., Possemiers S., Hansen L., De Beer T., and Vervaet C., Thermoplasic
Polyurethanes for the Manufacturing of Highly Dosed Oral Susained Release Matrices via Hot Melt Extrusion and
Injection Molding, Eur. J. Pharm. Biopharm., 90, 44-52, 2015.
30. Kohjiya S., Ikeda Y., Takesako S., and Yamashita S., Drug Release Behavior from Polyurethane Gel, React. Polym., 15,
165-175 , 1991.