بررسی کاربرد داربست‌های زیست‌فعال پلی‌لاکتیک اسید در پزشکی بازساختی

نوع مقاله : تالیفی

نویسنده

دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر

چکیده

پزشکی بازساختی حوزه رو به ­رشدی برای ترمیم بافت ­های آسیب ­دیده بدن موجود زنده است و امروزه به ­عنوان درمانی نوین، مطرح شده است. بدین منظور، زیست ­مواد پلیمری (داربست ­ها) و یاخته ­های زنده استفاده می ­شوند. هدف از این کار، بررسی کاربرد داربست­ های زیست ­فعال پلی­ لاکتیک اسید در بازسازی بافت­ های مختلف است. پلی ­لاکتیک اسید زیست ­پلیمری سنتزی است که در سال­ های اخیر به ­عنوان پیشنهاد مهمی در تولید داربست ­های مهندسی بافت مطرح شده است. این پلیمر ماده ­ای زیست ­سازگار، زیست­ تخریب­ پذیر و زیست ­جذب ­پذیر است که در بدن موجود زنده به­ طور کامل آبکافت می ­شود و به مولکول­ های آب و کربن دی­ا کسید تجزیه می ­شود. تولید داربست ­های زیست­ فعال پلی­ لاکتیک اسید که پس از کاشت درون­ تنی، قابلیت ایجاد پیوند شیمیایی با یاخته ­های بدن میزبان را دارند، روش بسیار نوینی در یاخته ­درمانی محسوب می­ شود. این روش اثر بسزایی بر روند و سرعت ترمیم انواع بافت­ های مختلف مانند بافت­ های مجرای ادرار، دیواره شکم، قلب، قرنیه چشم، مثانه، عروق، تاندون، غضروف، پوست، عصب و استخوان و نیز رباط پیرادندانی دارد. در این مقاله، جدیدترین و برجسته ­ترین پژوهش ­های دانشمندان بالینی جهان در سال­ های 2020 و 2021، به ­منظور تولید داربست ­های زیست­ فعال پلی­ لاکتیک اسید برای بازسازی بافت ­های بدن به ­طور خلاصه مرور می ­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Application of Polylactic Acid Bioactive Scafolds in Reconsructive Medicine

نویسنده [English]

  • Farnaz-sadat Fattahi
چکیده [English]

Reconsructive medicine is a growing feld for repairing damaged tissues in living organisms and is now proposed as a new treatment. For this purpose, polymeric biomaterials (scafolds) and living cells are used. The aim of this sudy was to invesigate the application of bioactive polylactic acid scafolds in the regeneration of various tissues.  Polylactic acid is a synthetic biopolymer that has been proposed in recent years as an important proposal in the production of tissue engineering scafolds. This polymer is a biocompatible, biodegradable and biosorbable material that is completely hydrolyzed in the living organisms and decomposed into water and carbon dioxide molecules. Production of bioactive polylactic acid scafolds that are able to chemically bond with hos cells after in vivo implantation is a very new method in cell therapy. This method has a great impact on the process and speed of repair of various tissues such as urethral tissue, abdominal wall tissue, periodontal ligament, heart tissue, corneal tissue, bladder tissue, vascular tissue, tendon tissue, cartilage tissue, skin tissue, nerve tissue, and bone tissue. In this article, the lates and mos prominent research of clinical scientiss in the world in 2020 and 2021, in order to produce bioactive polylactic acid scafolds for regeneration of body tissues is briefy reviewed.

کلیدواژه‌ها [English]

  • poly(lactic acid)
  • reconstructive medicine
  • bioactive scaffold
  • in vivo implantation
  • extracellular natural matrix
1. Fattahi F.S., Nanoscience and Nanotechnology in Fabrication  of Scafolds for Tissue Regeneration, Int. Nano Lett., 11, 1-23, 2021.
2. Raie F. and Agbolaghi S., Carbon Nanotubes Application in Polymer-Based Scafolds, Polymerization (Persian), 9, 15-24, 
2019.
3. Fattahi F.S.,  Poly(lactic acid) Nanofbers as Novel Drug Delivery Sysems: A Bird’s Eye View, Lambert Academic, 
Germany, pp. 13-22, 2020.
4. Huang L., Wang X., Zhang Y., Cheng Z., Xue F., and Guo Y., Electrospun Mg/Poly(lactic-co-glycolic acid) Composite 
Scafold for Urethral Reconsruction,  J. Mater. Sci.,  55, 13216-31, 2020.
5. Salem S.A., Rashidbenam Z., Jasman M.H., Ho C.C.K., Sagap I., and Singh R., Incorporation of Smooth Muscle Cells Derived from Human Adipose Stem Cells on Poly(lactic-co-glycolic acid) Scafold for the Reconsruction of Subtotally Resected Urinary Bladder in Athymic Rats, Tissue Eng. Regen. Med., 17, 553-563, 2020.
6. Rezaei H., Rezaie Z., Seifati S.M., Ardeshirylajimi A., Basiri A., and Taheri M., Poly phosphate Increases SMC Diferentiation of Mesenchymal Stem Cells on PLGA-Polyurethane Nanofbrous Scafold, Cell. Tissue. Bank., 21, 495-505, 2020.
7. Li S., Su L., Li X., Yang L., Yang M., and Zong H., Reconsruction of Abdominal Wall with Scafolds of Electrospun Poly(L-lactide-co-caprolactone) and Porcine Fibrinogen: An Experimental Study in the Canine, Mater. Sci. Eng. C.,  110, 110644, 2020.
8. Mao Y., Chen M., Guidoin R., Li Y., Wang F., and Brochu G., Potential of a Facile Sandwiched Electrospun Scafold Loaded 
with Ibuprofen as an Anti-Adhesion Barrier, Mater. Sci. Eng. C, 118, 111451, 2021.
9. Gendviliene I., Simoliunas E., Alksne M., Dibart S., Jasiuniene E., and Cicenas V., Efect of Extracellular Matrix and Dental 
Pulp Stem Cells on Bone Regeneration with 3D Printed PLA/HA Composite Scafolds, Eur. Cell. Mater., 41, 204-215, 2021
10. Jiang L., Ding Z., Xia S., Liu Y., Lei S., and Zhong M., Poly(lactic-co-glycolic acid) Scafold Loaded with Plasmid 
DNA Encoding Fibroblas Growth Factor-2 Promotes Periodontal Ligament Regeneration of Replanted Teeth,  J. 
Periodontal Res.,  55, 488-95, 2020.
11. Ye Z., Xu W., Shen R., and Yan Y., Emulsion Electrospun PLA/Calcium Alginate Nanofbers for Periodontal Tissue 
Engineering,  J.  Biomater. Appl.,  34, 763-777, 2020.
12. Mohandesnezhad S., Pilehvar-Soltanahmadi Y., Alizadeh E., Goodarzi A., Davaran S., and Khatamian M., In Vitro 
Evaluation of Zeolite-nHA Blended PCL/PLA Nanofbers for Dental Tissue Engineering, Mater. Chem. Phys., 252, 123152, 
2020.
13. Behtaj S., Karamali F., Masaeli E., Anissimov Y.G., and Rybachuk M., Electrospun PGS/PCL, PLLA/PCL, PLGA/
PCL and Pure PCL Scafolds for Retinal Progenitor Cell Cultivation,  Biochem. Eng. J.,  166, 107846, 2021.
14. Yan D., Yao Q., Yu F., Chen L., Zhang S., and Sun H., Surface Modifed Electrospun Poly(lactic acid) Fibrous Scafold with 
Cellulose Nanofbrils and Ag Nanoparticles for Ocular CellProliferation and Antimicrobial Application, Mater. Sci. Eng. 
C., 111, 110767, 2020.
15. Zhang F., Bambharoliya T., Xie Y., Liu L., Celik H., and Wang L., A Hybrid Vascular Graft Harnessing the Superior 
Mechanical Properties of Synthetic Fibers and The Biological Performance of Collagen Filaments, Mater. Sci. Eng C, 118, 
111418, 2021.
16. Wang P., Sun Y., Shi X., Shen H., Ning H., and Liu H., 3D Printing of Tissue Engineering Scafolds: A Focus on Vascular 
Regeneration, Bio-Des. Manufact., 4, 344-378, 2021.
17. Muniyandi P., Palaninathan V., Veeranarayanan S., Ukai T., Maekawa T., and Hanajiri T., ECM Mimetic Electrospun 
Porous Poly(L-lactic acid) (PLLA) Scafolds as Potential Subsrates for Cardiac Tissue Engineering, Polymers, 12, 451, 
2020.
18. Yan C., Ren Y., Sun X., Jin L., Liu X., and Chen H., Photoluminescent Functionalized Carbon Quantum Dots 
Loaded Electroactive Silk Fibroin/PLA Nanofbrous Bioactive Scafolds for Cardiac Tissue Engineering,  J. Photochem. 
Photobiol. B,  202, 111680, 2020.
19. Aidin M. and Rahmatoglu J., The Fabrication of Biodegradable Nanofbrous Scafold for Vascular Tissue through the Blend Electrospinning, Medbiotech. J., 4, 62-69, 2020.
20. Mousa H.M., Hussein K.H., Sayed M.M., El-Aassar M.R., Mohamed I.M.A., and Kwak H.H., Development 
of Biocompatible Tri-Layered Nanofbers Patches with Endothelial Cells for Cardiac Tissue Engineering, Eur. Polym. 
J.,  129, 109630, 2020.
21. Chinta M.L., Velidandi A., Pabbathi N.P.P., Dahariya S., and Parcha S.R., Assessment of Properties, Applications 
and Limitations of Scafolds Based on Cellulose and Its Derivatives for Cartilage Tissue Engineering: A Review,  Int. 
J. Biol. Macromol.,  175, 495-515, 2021.
22. WuS., Zhou R., Zhou F., Streubel P.N., Chen S., and Duan B., Electrospun Thymosin Beta-4 Loaded PLGA/PLA Nanofber/
Microfber Hybrid Yarns for Tendon Tissue Engineering Application, Mater. Sci. Eng. C., 106, 110268, 2020.
23. Gögele C. and Hahn J., Enhanced Growth of Lapine Anterior Cruciate Ligament-Derived Fibroblass on Scafolds 
Embroidered from Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Threads Functionalized by Fluorination and 
Hexamethylene Diisocyanate Cross-Linked Collagen Foams, Int. J. Mol. Sci.,  21, 2020. doi: 10.3390/ijms21031132
24. Jiao J., Peng C., Li C., Qi Z., Zhan J., and Pan S., Dual Bio-active Factors with Adhesion Function Modifed Electrospun 
Fibrous Scafold for Skin Wound and Infections Therapeutics, Sci. Rep., 11, 457, 2021.
25. Radwan-Praglowska J., Janus L., Piatkowski M., Bogdal D., and Matýsek D., Hybrid Bilayer PLA/Chitosan Nanofbrous 
Scafolds Doped with ZnO, Fe3O4, and Au Nanoparticles with  Bioactive Properties for Skin Tissue Engineering, Polymers, 
12, 2020. doi: 10.3390/polym12010159
26. Shuai C., Yang W., Feng P., Peng S., and Pan H., Accelerated Degradation of HAP/PLLA Bone Scafold by PGA Blending 
Facilitates Bioactivity and Oseoconductivity, Bioact. Mater., 6, 490-502, 2021.
27. Bochicchio B., Barbaro K., De Bonis A., Rau J.V., and Pepe A.,  Electrospun  Poly(D,L-lactide)/  Gelatin/Glass-  Ceramics 
Tricomponent Nanofbrous Scafold for Bone Tissue Engineering, J. Biomed. Mater. Res. A,  108, 1064-1076, 2020.
28. Niu Y., Stadler F.J., and Fu M., Biomimetic Electrospun Tubular PLLA/Gelatin Nanofber Scafold Promoting Regeneration of Sciatic Nerve Transection in SD Rat, Mater. Sci. Eng. C, 121, 111858, 2021. 
29. Xu H., Li R., Li Y., He Q., Yan X., and Shu T., Preparation and Characterization of Polylactic Acid/Graphene Oxide/
Nerve Growth Factor Scafold with Electrical Stimulation for Peripheral Nerve Regeneration In Vitro,  J. Wuhan Uni. 
Technol. Mater. Sci. Ed.,  35, 1149-61, 2020.
30. Sahvieh S. and Oryan A., Role of Bone 1sem Cell-Seeded 3D Polylactic Acid/Polycaprolactone/Hydroxyapatite Scafold on a Critical-Sized Radial Bone Defect in Rat., Cell Tissue Res.,  383, 735-750, 2021.
31. Liu R., Zhang S., Zhao C., Yang D., Cui T., and Liu Y., Regulated Surface Morphology of Polyaniline/Polylactic Acid 
Composite Nanofbers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering, Nanoscale Res. Lett., 16, 4, 2021.
32. Wu S., Zhou R., Zhou F., Streubel PN., Chen S., and Duan B., Electrospun Thymosin Beta-4 Loaded PLGA/PLA Nanofber/ Microfber Hybrid Yarns for Tendon Tissue Engineering Application, Mater. Sci. Eng. C, 106, 110268, 2020.
33. He J., Hu X., Cao J., Zhang Y., Xiao J., and Peng L., Chitosan-Coated Hydroxyapatite and Drug-Loaded Polytrimethylene 
Carbonate/Polylactic Acid Scafold for Enhancing Bone Regeneration,  Carbohydr.  Polym.,  253, 117198, 2021.
34. Pourentezari M., Sharifan Z., Mardani M., Valiani A., Zamani Rarani M., and Setayesh Mehr M., Comparison of TGF-β3 
and Avocado/Soybean Unsaponifable on Chondrogenesis of Human Adipose-Derived Stem Cells on Poly(lactic-co-
glycolic) Acid/ Hyaluronic Acid Hybrid Scafold,  Iran. J. Basic. Med. Sci.,  24, 24-9, 2021.
35. Alizadeh-Osgouei M., Li Y., Vahid A., Ataee A., and Wen C., High Strength Porous PLA Gyroid Scafolds Manufactured 
via Fused Deposition Modeling for Tissue-Engineering Applications,  Smart Mater. Med.,  2, 15-25, 2021.