سازوکار و اثر سازگارسازی نانوذرات در آمیخته‌های پلیمری

نوع مقاله : تالیفی

نویسندگان

1 مهندسی پلیمر، دانشکده مهندسی پلیمر و علوم رنگ، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 گروه فرآیند، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران

چکیده

آمیخته‌سازی پلیمرها از جمله روش­ های سودمند برای توسعه­ مواد پلیمری با خواص بهبودیافته یا ایجاد خواص ویژه در پلیمرهاست. آمیخته برخی از پلیمرها به­ طور کامل یا جزئی امتزاج­ پذیر است، اما آمیخته بسیاری از آن­ها امتزاج ­ناپذیر بوده و ریزساختار آمیخته ناشی از وزن مولکولی زیاد و برهم­ کنش ­های نامطلوب، چندفازی خواهد بود. پژوهش­ های گسترده ­ای در زمینه توسعه رویکرد­های سازگار­سازی آمیخته ­ها انجام شده است. اصلاح سطحی پلیمرها، افزودن کوپلیمر­های قطعه‌ای، سازگار­سازی واکنشی، شبکه­ ای کردن، شبکه­ های درهم ­نفوذکرده و اخیرا افزودن پرکننده‌ها در ابعاد میکرو و نانو از جمله روش ­هایی است که برای بهبود سازگاری آمیخته‌ها استفاده می­ شود. کاهش مدول و خواص وابسته به آن، هنگام افزودن سازگارکننده‌های پلیمری موجب شده است تا توجه پژوهشگران بیش از پیش به سوی نانوذرات و اثر سازگارسازی آن‌ها معطوف شود. سازوکارهای سازگارسازی آمیخته‌های پلیمری با استفاده از نانوذرات را می‌توان بر اساس محل قرارگیری آن­ها در آمیخته به دو حالت تقسیم کرد. نخست، نانوذرات در فاز ماتریس با تشکیل شبکه سه­ بعدی و افزایش گرانروی، تنش بیشتری به فاز پراکنده وارد می ­کنند، اندازه نواحی پراکنش را کاهش می‌دهند و در ادامه موجب کاهش پدیده ادغام نواحی پراکنش می­ شوند. در حالت دوم، نانوذرات با قرارگیری در سطح مشترک میان فازهای ماتریس و پراکنده، موجب کاهش تنش بین­ سطحی و افزایش چسبندگی در سطح مشترک می‌شوند. همچنین در این حالت نیز از ادغام قطره ­های فاز پراکنده جلوگیری می‌کنند. در این مقاله، اثر سازگارسازی نانوذرات در آمیخته‌های پلیمری، سازوکارها و عوامل ساختاری مؤثر بر آن بحث می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanism and Compatibilization Effect of Nanoparticles in Polymer Blends

نویسندگان [English]

  • mohammad soroush abzan 1
  • ramin mirzaee 1
  • shervin ahmadi 2
1 polymer engineering, Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, tehran, iran
2 process groups. Iran Polymer and Petrochemical, Tehran, Iran
چکیده [English]

Blending of polymers is one of the useful methods for developing polymeric materials with improved properties or creating special properties in polymers. The mixture of some polymers is completely or partially miscible, but the mixture of many polymers is immiscible and their microsructure will be multiphase due to high molecular weight and 
undesirable interactions. Extensive research has been conducted on the development of  blend compatibilization approaches. Surface modifcation of polymers, addition of block copolymers, reactive compatibilization, crosslinking, interpenetrating networks, and more recently the addition of fllers in the micro and nano dimensions are some of the methods used to improve the compatibility of mixtures. The reduction of modulus and its related properties, when adding polymeric compatibilizers has caused researchers to pay more attention to nanoparticles and their compatibility effect. Compatibility mechanisms of polymer blends using nanoparticles can be divided into two modes based on their location in the blend. Firs, nanoparticles in the matrix phase, by forming a three-dimensional network and increasing the viscosity, apply more sress to the dispersed phase, reduce the size of the dispersed regions, and then reduce the coalescence phenomena of dispersed particles. In the second case, the nanoparticles, by locating at the interface between the matrix and dispersed phases reduce the interfacial sress and increase the interfacial adhesion. Also, in 
this case, they prevent the integration of scattered phase droplets. In this paper, the effect of nanoparticle compatibility on polymer blends, mechanisms, and the afecting sructural 
factors are reviewed

کلیدواژه‌ها [English]

  • polymer blends
  • compatibilization
  • nanoparticles
  • interface
  • 3D network
1.  Ramachandran A.A.,   Reghunadhan A., Maria H.J., and Thomas S., Role of  Functional  Polymers  in the Compatibilization of Polymer Blends, React. Funct. Polym., 2, 5–21, 2020.
2.  Shokoohi S. and Arefazar A., Polymer Blends (Alloy), 1s ed., Amirkabir University of Technology (Tehran Polytechnic(, 
Tehran, 241-307, 2011.
3.  Paul D.R., Polymer Blends, Vol. 1, Academic,  Netherlands, 1-45, 2012. 
4.  Abzan M.S. and  Ahmadi D., Invesigation  of  GO  Network Formation in N6/PC Blen: Scrutinizing Thermal  Degradation and  Rheological  Behavior,  14th  International  Seminar  on Polymer  Science  and  Technology  (ISPST 2020),  November 2020. 
5.  Isayev A.I.,  Encyclopedia  of  Polymer  Blends, Vol. 1, Fundamentals, Wiley-VCH, Germany, 233-263, 2010.
6.  Isayev A.I.,  Encyclopedia of Polymer Blends, Vol. 2, Processing, Wiley-VCH, Germany, 357-385, 2011.
7.  Isayev A.I., Encyclopedia of Polymer Blends, Vol. 3, Structure. Wiley-VCH, Germany, 401-473, 2016.
8.  Babadi S., Barmar M., and Ahmadi S.,  Characterization of Phase Separation in Polymer Blends, Polymerization (Persian), 7, 1, 114–125, 2017.
9.  Neserov A.E. and Lipatov Y.S., Compatibilizing Efect of a Filler in Binary Polymer Mixtures, Polymer, 40, 5, 1347–
1349, 1999.
10. Ginzburg V.V., Nanoparticle/Polymer Blends: Theory and Modeling, Encyclopedia of Polymer Blends, 233–268, 2010.
11. Ginzburg V.V., Infuence of Nanoparticles on Miscibility of Polymer Blends. A Simple Theory, Macromolecules, 38, 6, 
2362–2367, 2005.
12. Lipatov Y.S., Phase Separation in Filled Polymer Blends,  J. Macromol. Sci. Part B,  45, 5, 871–888, 2006.
13. Neserov A.E., Lipatov Y.S., Horichko V.V., and Ignatova T.D., Efect of Filler on Kinetics and Energy of Activation 
of Phase Separation in Poly(methyl methacrylate(/Poly(vinyl acetate( Blend, Macromol. Chem. Phys., 199, 11, 2609–2612, 
1998.
14. Lipatov Y.S. and Neserov A.E., Efect of Filler Concentration on the Phase Separation in Poly(vinyl acetate(-Poly(methy
methacrylate( Mixtures, Polym. Eng. Sci., 32, 17, 1261–1263, 1992.
15. Zhang Q., Yang H., and Fu Q., Kinetics-ControlleCompatibilization of Immiscible Polypropylene/Polysyren
Blends Using Nano-SiO2  Particles, Polymer, 45, 6, 1913–1922 2004.
16. Khatua B.B., Lee D.J., Kim H.Y., and Kim J.K., Efecof Organoclay Platelets on Morphology of Nylon-6 an
Poly(ethylene-ran-propylene( Rubber Blends, Macromolecules37,  7,  2454–2459,  2004.
17. Neserov A.E., Lipatov Y.S., and Ignatova T.D., Efect o an Interface with Solid on the Component Disribution i
Separated Phases of Binary Polymer Mixtures, Eur. Polym. J 37, 2, 281–285, 2001.
18. Lipatov Y.S., Polymer Blends and Interpenetrating Polyme Networks at the Interface with Solids, Prog. Polym. Sci., 27
9, 1721–1801, 2002.
19. Neserov A., Horichko V., and Lipatov Y., Phase Separatio of Poly(vinyl acetate(-Poly(methyl methacrylate( Mixtures i
Thin Films, Die Makromol. Chemie, Rapid Commun., 12, 10 571–574, 1991.
20. Lipatov Y.S., Neserov A.E., Ignatova T.D., and Nesero D.A., Efect of Polymer–Filler Surface Interactions on th
Phase Separation in Polymer Blends,  Polymer,  43, 3, 875 880,  2002.
21. He G., Ginzburg V.V., and Balazs A.C., Determining the Phas Behavior of Nanoparticle-Filled Binary Blends, J. Polym. Sci
Part B: Polym. Phys., 44, 17, 2389–2403, 2006.
22. Carnahan N.F. and Starling K.E., Equation of State fo Nonattracting Rigid Spheres, J. Chem. Phys., 51, 2, 635–636
1969.
23. Glogowski E.,  Tangirala R., Russell T.P.,  and  Emrick T Functionalization of Nanoparticles for Dispersion in Polymer
and Assembly in Fluids, J. Polym. Sci. Part A: Polym. Chem 44, 17, 5076–5086, 2006.
24. Chung H., Ohno K., Fukuda T., and Composo R.J., Self regulated Structures in Nanocomposites by DirecteNanoparticle Assembly, Nano Lett., 5, 10, 1878–1882, 2005.
25. Pieranski P., Two-Dimensional Interfacial Colloidal Crysals,  Phys. Rev. Lett., 45, 7,  569, 1980.
26. Binks B.P. and Clint J.H., Solid Wettability from Surface Energy  Components: Relevance to Pickering Emulsions, Langmuir, 18,  4, 1270–1273, 2002.
27. Gubbels F., Jerome R., Teyssie P., Vanlathem E., Deltour  R., Calderone A., Parente V., and Bredas J.L., Selective 
Localization of Carbon Black in Immiscible Polymer Blends:  A Useful Tool to Design Electrical Conductive Composites, 
Macromolecules,  27,  7,  1972–1974,  1994.
28. Gubbels F., Blacher S., Vanlathem E., Jerome R., Deltour  R., Brouers F., and Teyssie P., Design of Electrical 
Composites: Determining the Role of the Morphology on the  Electrical Properties of Carbon Black Filled Polymer Blends, 
Macromolecules,  28,   5,  1559–1566,  1995.
29. Li W., Karger-Kocsis J., and Thomann R., Compatibilization  Efect of TiO2
 Nanoparticles on the Phase Structure of PET/PP/ TiO2  Nanocomposites, J. Polym. Sci. Part B: Polym. Phys., 47, 
16, 1616–1624, 2009.
30. Chow W.S., Bakar A.A., Ishak Z.A.M., Karger-Kocsis  J., and Ishiaku U.S., Efect of Maleic Anhydride-Grafted 
Ethylene–Propylene Rubber on the Mechanical, Rheological  and Morphological Properties of Organoclay Reinforced 
Polyamide 6/Polypropylene Nanocomposites, Eur. Polym. J.,  41, 4, 687–696, 2005.
31. Si M., Araki T., Ade H., Kilcoyne A.L.D., Fisher R., Sokolov  J.C., and Rafailovich M.H., Compatibilizing Bulk Polymer 
Blends by Using Organoclays, Macromolecules,  39, 14,  4793–4801,  2006.
32. Bizhani H., Nayyeri V., Katbab A., Jalali-Arani A., and  Nazockdas H., Double Percolated MWCNTs Loaded PC/SAN 
Nanocomposites as an Absorbing Electromagnetic Shield, Eur.  Polym. J.,  100, 209–218, 2018.
33. Walters M.H. and Keyte D.N., Heterogeneous Structure in  Blends of Rubber Polymers, Rubber Chem. Technol., 38, 1, 
62–75,  1965.
34. Wu S., Polymer Interface and Adhesion, Marcel Dekker, New  York, 169-211, 1982.
35. Ross S. and Morrison E.D., Colloidal Sysems and Interfaces,  John Wiley and Son, New York, 178-195, 1988.
36. Kubade P. and Tambe P., Infuence of Surface Modifcation  of Halloysite Nanotubes and its Localization in PP Phase on 
Mechanical and Thermal Properties of PP/ABS Blends, Compos.  Interfaces,  24, 5, 469–487, 2017.
37. Persson A.L., and Bertilsson H., Viscosity Diference as  Disributing Factor in Selective Absorption of Aluminium 
Borate Whiskers in Immiscible Polymer Blends, Polymer, 39,  23,  5633–5642,  1998.