مروری برسینتیک پخت نانوکامپوزیت‌های اپوکسی در مجاورت نانوذرات آهن اکسید

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی، واحد تهران جنوب

2 گروه مهندسی پلیمر دانشگاه آزاد اسلامی واحد تهران جنوب

چکیده

نانوکامپوزیت ­های گرماسخت، به ­دلیل استحکام و خواص فیزیکی و مکانیکی ویژه در مقایسه با مواد فلزی، کاربرد بسیاری در ساخت وسایل خانگی، الکتریکی، پوشش ­ها و وسایل ورزشی و بهداشتی دارند. خواص گرمایی نانو­کامپوزیت­ های اپوکسی به چسبندگی بین نانوذرات و ماتریس بستگی دارد. همچنین، طراحی نانوکامپوزیت­ های اپوکسی با کیفیت و بازده زیاد و خواص فیزیکی و مکانیکی مناسب نیازمند فهم و دانش پدیده­ هایی است که در زمان  واکنش پخت انجام می ­شوند. واکنش رزین اپوکسی و عامل پخت و  نیز بررسی سینتیک پخت نقش مهمی در کنترل تغییر شکل ساختار و خواص فیزیکی و مکانیکی کامپوزیت ها دارد. بررسی و مطالعه پراکنش نانوذرات و انتخاب روش اختلاط مناسب، می­ تواند موجب بهبود واکنش پخت یا شبکه ­ای­ شدن نانوکامپوزیت ­های اپوکسی شود. همچنین، این کار می ­تواند از کلوخگی نانوذرات جلوگیری کند که بر واکنش­ های گرمایی اثرگذارند. نانوذرات آهن اکسید اصلاح ­شده باعث کاهش انرژی فعال­سازی واکنش می ­شود و زمان واکنش پخت را کاهش می­ دهد. زمان و دمای واکنش، دو عامل مهم  برای ارزیابی واکنش­ های شیمیایی پخت هستند. تحلیل مدل­سازی سینتیک پخت نانوکامپوزیت­ های اپوکسی، راه­ حلی برای غلبه بر مشکلات واکنش­ های گرمایی است که طی واکنش ­های پخت روی می­ دهند. در این مقاله، مدل­سازی سینتیک پخت نانوکامپوزیت­ های اپوکسی و اثر افزودن نانوذرات آهن اکسید اصلاح ­شده و نشده بر مقدار انرژی فعال­سازی، شاخص پخت، خواص رئولوژیکی، مکانیکی و گرمایی معرفی می­ شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Review of Curing Kinetics of Epoxy Nanocomposites in the Presence of Iron Oxide Nanoparticles

نویسندگان [English]

  • Mohammadreza Kalaee 1
  • Mohammadhossein Karami 2
1 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Polymer Engineering, Islamic Azad University, South Tehran Branch
چکیده [English]

Thermoset nanocomposites, due to their strength and special physical and mechanical properties compared to metal materials, are widely used in the manufacture of household appliances, electrical appliances, coatings and sports equipment, and sanitary wares. The thermal properties of epoxy nanocomposites depend on the adhesion between the nanoparticles and matrix. Also, designing high quality and efficient epoxy nanocomposites with suitable physical and mechanical properties requires understanding the phenomena that occur during the curing reaction. The reaction of epoxy resin and curing agent as well as the study of curing kinetics play an important role in controlling the deformation of the structure and physical and mechanical properties of the composites. Investigating the dispersion of nanoparticles and selecting the appropriate mixing method can improve the curing reaction or crosslinking of epoxy nanocomposites. It can also prevent the agglomeration of nanoparticles, that affect thermal reactions. Modified iron oxide nanoparticles reduce the reaction activation energy and the curing time. Reaction time and temperature are two important factors for evaluating chemical curing reactions. Modeling analysis of curing kinetics of epoxy nanocomposites is a solution to overcome the problems of thermal reactions that occur during the curing reactions. In this paper, the curing kinetics modeling of epoxy nanocomposites and the effect of adding modified and unmodified iron oxide nanoparticles on the amount of activation energy, curing index, and rheological, mechanical and thermal properties are introduced.

کلیدواژه‌ها [English]

  • nanoparticles
  • iron oxide
  • epoxy resin
  • curing kinetics
  • modeling
1. Kinjo N., Ogata M.K., and NishiKaneda A., Epoxy Molding Compounds as Encapsulation Materials for Microelectronic
Devices, Adv. Polym. Sci., 88, 1-48, 1989.
2. Messersmith P.B. and Giannelis E.P., Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites, Chem. Mater., 6, 1719-1725, 1994.
3. Roşu D., Cascaval C.N., Mustątǎ F., and Ciobanu C., Cure Kinetics of Epoxy Resins Studied by Nonisothermal DSC
Data, Thermochim. Acta, 383, 119-127, 2002.
4. Rozenberg B.A. and Tenne R., Polymer-Assisted Fabrication of Nanoparticles and Nanocomposites, Prog Polym. Sci., 33,
112-125, 2008.
5. Zabihi O., Mostafavi S.M., Ravari F., Khodabandeh A., Hooshafza A., and Zare K., The Effect of Zinc Oxide Nanoparticles
on Thermo-physical Properties of Diglycidyl Ether of Bisphenol/2,20-Diamino-1,10-Binaphthalene Nanocomposites,
Thermochim. Acta, 521, 49-56, 2011.
6. Zanetti M., Lomakin S., and Camino G., Polymer Layered Silicate Nanocomposites, Macromol. Mater. Eng., 279, 1-9,
2000.
7. Manfredi L.B., De Santis H., and Vázquez A., Influence of the Addition of Montmorillonite to the Matrix of Unidirectional
Glass Fibre/Epoxy Composites on their Mechanical and Water Absorption Properties, Compos. Part A: Appl. Sci. Manuf., 39, 172-183, 2008.
8. Kathi J., Rhee K.Y., and Lee J.H., Effect of Chemical Functionalization of Multi-walled Carbon Nanotubes
With 3-Aminopropyltriethoxysilane on Mechanical and Morphological Properties of Epoxy Nanocomposites,
Compos. Part A: Appl. Sci. Manuf., 40, 80-95, 2009.
9. Gerson A.L., Bruck HA., Hopkins AR., and Segal KN., Curing Effects of Single-Wall Carbon Nanotube Reinforcement on
Mechanical Properties of Filled Epoxy Adhesives, Compos. Part A: Appl. Sci. Manuf., 41, 72-94, 2010.
10. Ngo T.D., Ton M.T., That T.S.V., Ho A., and Cole K.C., Curing Kinetics and Mechanical Properties of Epoxy Nanocomposites Based on Different Organoclays, Polym. Eng. Sci., 58, 72-94, 2010.
11. Kalaee M.R., Akhlaghia S., Nourib A., Mazinani S., Mortezaei M., Afshari M., Mostafanezhad et al., Effect of Nano-Sized
Calcium Carbonate on Cure Kinetics and Properties of Polyester/Epoxy Blend Powder Coatings, Prog. Org. Coat.,
71, 173-180, 2011.
12. Rosso P. and Ye L., Epoxy/Silica Nanocomposites, Nanoparticle-Induced Cure Kinetics and Microstructure,
Macromol. Rapid Commun., 28, 121-126, 2007.
13. Heo G.Y. and Park S.J., Rheological and Thermal Properties of Epoxy Nanocomposites Reinforced with Alkylated Multi-
Walled Carbon Nanotubes, J. Soc. Chem. Ind., 61, 1371-1375, 2012.
14. Mijovic J., Cure Kinetics of Neat Versus Reinforced Epoxies, J. Appl. Polym. Sci., 31, 1177-1187, 1986.
15. Kalaee M.R., Famili1 M.H.N., and Mahdavi H., Cure Kinetic of Poly(alkyltetrasulfide) Using a Rheological Method, Polym. Plast. Technol. Eng., 48, 627-632, 2009.
16. Jin F.L., Li X., and Park S.J., Synthesis and Application ofEpoxy Resins: A Review, J. Ind. Eng. Chem., 29, 1-11, 2015. 
17. Giri S., Samanta S., Maji S., Ganguli S., and Bhaumik A., Magnetic Properties of α-Fe2O3 Nanoparticle Synthesized by
A New Hydrothermal Method, J. Magn. Magn. Mater., 285, 296-302, 2005.
18. Reso D., Cascaval C.N., Mustata F., and Ciobanu C., Cure Kinetics Epoxy Resins Studied by Nonisothermal DSC Data,
Thermochim. Acta, 383, 119-127, 2002.
19. Montserrat S. and Málek J., A Kinetic Analysis of the Curing Reaction of an Epoxy Resin, Thermochim. Acta, 228, 47-60,
1993.
20. Málek J., A Computer Program for Kinetic Analysis of Nonisothermal Thermo Analytical Data, Thermochim. Acta, 138,
337-346, 1989.
21. Málek J., The Kinetic Analysis of Non-Isothermal Data, Thermochim. Acta, 200, 257-269, 1992.
22. Rena D.R., Xiong X., Maa X., Liu S., Wang J, Chen P., and Zeng Y., Isothermal Curing Kinetics and Mechanism of DGEBA
Epoxy Resin with Phthalide-Containing Aromatic Diamine, Thermochim. Acta, 623, 15-21, 2016.
23. Vyazovkin S., Burnham A., Criado J.M., Maqueda L.A.P., Popescu C., and Sbirrazzuoli N., ICTAC Kinetics Committee
Recommendations for Performing Kinetic Computations on Thermal Analysis Data, Thermochim. Acta, 520, 1-19, 2011.
24. Saeb M.R., Rastin H., Shabanian M., Ghaffari M., and Bahlakeh G.H., Cure Kinetics of Epoxy/β-Cyclodextrin-Functionalized Fe3O4 Nanocomposites: Experimental Analysis, Mathematical Modeling, and Molecular Dynamics Simulation, Prog. Org. Coat., 110, 172–181, 2017.
25. Zabihi O., Hooshafza A., Moztarzadeh F., Payravand P., Afshar A., and Alizadeh R., Isothermal Curing Behavior and Thermo- Physical Properties of Epoxy-Based Thermoset Nanocomposites Reinforced with Fe2O3 Nanoparticles, Thermochim. Acta, 527, 190-198, 2012.
26. Jouyandeh M., Rahmati N., Movahedifard E., Hadavand B.S.H., Karami Z., Ghaffari M., Taheri M. et al., Properties
of Nano-Fe3O4 Incorporated Epoxy Coatings from Cure Index Perspective, Prog. Org. Coat., 133, 220-228, 2019.
27. Saeb M.R., Nonahal M., Rastin H., Shabanian M., Ghaffari M., Bahlakeh G.H., Ghiyasi S. et al., Calorimetric Analysis
and Molecular Dynamics Simulation of Cure Kinetics of Epoxy/Chitosan-Modified Fe3O4 Nanocomposites, Prog. Org.
Coat., 112, 176-186, 2017.
28. Zabihi O., Aghaie M., Aghaie H., Zare K., and Saghapour Y., Description of Phenomenological Process During
Thermal Formation of an Epoxy System in Presence of Metal Nanoparticles Using Advanced Kinetics Analysis, J. Therm.
Anal. Calorim., 117, 53-61, 2014.
29. Jouyandeh M., Paran S.M.R., Mousavi S.S., Mohammad K.H., Ganjali.R., Akbari V., Vahabi H., and Saeb M.R., Nonisothermal Cure Kinetics of Epoxy/MnxFe3-xO4 Nanocomposites, Prog. Org. Coat., 140, 105505, 2020.
30. Jouyandeh M., Ganjali M.R., Jagar A., Aghazadeh M., Stadler F.J., and Saeb M.R., Curing Epoxy with Electrochemically
Synthesized MnxFe3-xO4 Magnetic Nanoparticles, Prog. Org. Coat., 136, 105199, 2019.
31. Lakouraj M.M., Rahpaima G., and Zare E.N., Effect of Functionalized Magnetite Nanoparticles and Diaminoxanthone
on the Curing, Thermal Degradation Kinetic and Corrosion Property of Diglycidyl Ether of Bisphenol A-Based Epoxy
Resin, Chinese J. Polym. Sci., 32, 1489-1499, 2014.
32. Jouyandeh M., Ganjali M.R., Seidi F., Xiao H., and Saeb M.R., Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites:
Effect of Zn and Mn Doping, Compos. Sci., 4, 55, 2020.
33. Zabihi O., Khodabandeh A., and Ghasemlou S., Investigation of Mechanical Properties and Cure Behavior of DGEBA/Nano- Fe2O3 with Polyamine Dendrimer, Polym. Degrad. Stab., 97, 190-198, 2012.