مروری بر کارایی بازدارنده‌های ‌‌شعله بی‌هالوژن برای پلی‌اولفین‌ها

نوع مقاله : تالیفی

نویسندگان

1 گروه مهندسی شیمی و پلیمر دانشگاه یزد

2 گروه مهندسی شیمی و پلیمر/دانشگاه یزد/یزد

چکیده

پلی­ اولفین­ها از پرکاربرد­ترین دسته مواد پلیمری با مقاومت اشتعال­ پذیری کم هستند. امروزه، به­ کار­گیری افزودنی­ های بی­ هالوژن برای ایجاد خواص بازدارندگی شعله در پلی­ اولفین­ها، به­ دلیل مشکلات زیست­محیطی افزودنی­ های هالوژن­ دار، حائز اهمیت است. بازدارنده­ های شعله بی­ هالوژن به چند دسته تقسیم می­شوند که مهم­ترین آن­ها انواع برپایه فسفر، مواد معدنی، نیتروژن، سیلیسیم، بور و سامانه­های گرماتورمی هستند. در این مقاله، سازوکار عملکرد و کارایی هر یک از این عوامل بازدارنده شعله برای سامانه ­های پلیمری برپایه پلی­ اولفین­ ها بررسی شده­ اند. نتایج مطالعات نشان می­ دهند، برای دست­یابی به خواص مقاومت در برابر اشتعال مطلوب برای پلی­ اولفین­ها، به­ علت بازده نسبتاً کم اکثر ترکیبات ض دشعله بی­ هالوژن، استفاده از مقدار­ زیاد آن­ها در فرمول­بندی محصول­ تولیدی لازم است که به افت قابل توجه خواص مکانیکی آن منجر می­شود. به­ منظور غلبه بر این مشکل، ترکیب افزودنی­ های بی­ هالوژن برای دست­یابی به اثر هم­افزایی، با هم استفاده می­شوند. براساس نتایج حاصل از مطالعات مشخص شده است، مناسب­ترین سامانه مکمل در کنار اکثر افزودنی­ های بی­ هالوژن برای رسیدن به اثر هم­ افزایی در ایجاد مقاومت اشتعال ­پذیری برای پلی­ اولفین­ ها، سامانه­ های گرماتورمی هستند. این اثر هم­ افزایی با سازوکار فاز جامد و تقویت پوشش محافظ در این فاز ناشی از وجود سامانه گرماتورمی ایجاد می­ شود.          

کلیدواژه‌ها


عنوان مقاله [English]

A Review on the Performance of Halogen-free Flame Retardants for Polyolefins

نویسندگان [English]

  • Mehdi Entezam 1
  • Reza Asgari Khoshouei 2
1 Department of Chemical and Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
2 Department of Polymer Chemistry/ Yazd university/ Yazd
چکیده [English]

P olyolefins (POs) are one of the most widely used classes of polymeric materials with
low flammability. Today, the use of halogen-free retardants (HFFRs) for polyolefins
is important due to the environmental problems of halogen additives. Halogen-free flame
retardants are divided into several categories, which the most important include phosphorusbased
types, minerals, nitrogen, silicon, boron, and intumescent systems. In this article,
the operation mechanism and performance of these additives as the flame retardants for
POs-based systems are reviewed. The results show that in order to achieve the desired
flame resistance properties for polyolefins, due to the relatively low efficiency of most
halogen-free flame retardant compounds, large amounts are used in the formulation,
resulting in a significant decrease of thier mechanical properties. To overcome this problem,
combinations of halogen-free flame retardants with synergistic effect should be used for
POs. Based on the studies, it has been found that intumescent systems are the most effective
additives, along with most of the halogen-free additives to achieve the synergistic effect
in creating flame resistance for polyolefins. This synergistic effect is created by the solid
phase mechanism and the strengthening of the protective coating in this phase due to the
presence of a intumescent systems.

کلیدواژه‌ها [English]

  • flame retardant
  • halogen-free
  • Polyolefine
  • polyethylene
  • Polypropylene
1. Sabet M., Hassan A., and Ratnam C.T., Effect of Zinc Bo rate on Flammability/Thermal Properties of Ethylene
Vi nyl Ac etate Filled with Metal Hydroxides, J. Reinf. Plast. Com pos., 32, 1122-1128, 2013.
2. Handbook of Industrial Polyethylene and Technology: Defi ni tive Guide to Manufacturing, Properties, Processing,
Applications and Markets Set, Spalding M.A. and Chatterjee A. (Eds.), John Wiley and Sons, New York, 1350-1410, 2017.
3. Lu K., Ye L., Liang Q., and Li Y., Selectively Located Alu mi num Hydroxide in Rubber Phase in a TPV: Towards
to a Halogen-Free Flame Retardant Thermoplastic Elastomer with Ultrahigh Flexibility, Polym. Compos., 36, 1258-1265,
2015.
4. Wang J., Wang L., and Xiao A., Recent Research Progress on the Flame-Retardant Mechanism of Halogen-Free Flame
Re tardant Polypropylene, Polym.-Plast. Technol. Eng., 48, 297-302, 2009.
5. Liang B., Hong X., Zhu M., Gao C., Wang C., and Tsubaki N., Synthesis of Novel Intumescent Flame Retardant Con tain ing
Phosphorus, Nitrogen and Boron and Its Application in Poly ethylene, Polym. Bull., 72, 2967-2978, 2015.
6. Duquesne S., Fontaine G., Cérin-Delaval O., Gardelle B., Tri cot G., and Bourbigot S., Study of the Thermal Deg ra da tion
of an Aluminium Phosphinate-Aluminium Trihy drate Com bi nation, Thermochim. Acta, 551, 175-183, 2013.
7. Non-Halogenated Flame Retardant Handbook, Morgan A.B. and Wilkie C.A. (Eds.), John Wiley and Sons, New York, 400-
440, 2014.
8. Advances in Fire Retardant Materials, Horrocks A.R. and Price D. (Eds.), Woodhead, England, 624, 2008.9. Van der Veen I. and de Boer J., Phosphorus Flame Retardants:Properties, Production., Environmental Occurrence, Toxicity
and Analysis, Chemosphere, 88, 1119-1153, 2012.
10. Schartel B., Phosphorus-Based Flame Retardancy Me cha nisms-Old Hat or a Starting Point for Future
Dev el op ment?, Materials, 3, 4710-4745, 2013.
11. Wang D.K., He H., and Yu P., Flame-Retardant and Ther mal Degradation Mechanism of Low-Density
Poly eth ylene Modi fied with Aluminum Hypophosphite and Mi croen cap su lated Red Phosphorus, J. Appl. Polym. Sci., 13,
43225-43235, 2016.
12. Elbasuney S., Novel Multi-Component Flame Retardant Sys tem Based on Nanoscopic Aluminium-Trihydroxide
(ATH), Powder Technol., 305, 538-545, 2017.
13. Pan Y., Han L., Guo Z., and Fang Z., Improving the Flame- Retardant Efficiency of Aluminum Hydroxide with Fullerene
for High-Density Polyethylene, J. Appl. Polym. Sci., 134, 44551-44560, 2017.
14. Wang C., Wang Y., and Han Z., Enhanced Flame Retardancy of Polyethylene/Magnesium Hydroxide with Polycarbosilane,
Sci. Rep., 8, 1-10, 2018.
15. Stark N.M., White R.H., Mueller S.A., and Osswald T.A., Evaluation of Various Fire Retardants for Use in Wood Flour–
Polyethylene Composites, Polym. Degrad. Stab., 95, 1903- 1910, 2010.
16. Farag Z.R., Friedrich J.F., and Krüger S., Adhesion Promotion of Thick Fire-Retardant Melamine Polymer Dip-Coatings at
Polyolefin Surfaces by Using Plasma Polymers, J. Adhes. Sci. Technol., 28, 2113-2132, 2014.
17. Liu D., Cai G., Wang J., Tan X., Lu H., Zhang S., and Dai Q., Thermal and Flammability Performance of Polypropylene
Composites Containing Melamine and Melamine Phosphate- Modified α-type Zirconium Phosphates, J. Appl. Polym. Sci.,
131, 40254-40262, 2014.
18. Lai X., Qiu J., Li H., Zhou R., Xie H., and Zeng X., Thermal Degradation and Combustion Behavior of Novel Intumes cent
Flame Retardant Polypropylene with N-alkoxy Hindered Amine, J. Anal. Appl. Pyrolysis, 120, 361-370, 2016.
19. Lai X., Tang S., Li H., and Zeng X., Flame-Retardant Me cha nism of a Novel Polymeric Intumescent Flame
Re tar dant Containing Caged Bicyclic Phosphate for Poly pro pylene, Polym. Degrad. Stab., 113, 22-31, 2015.
20. Wang D.-Y., Liu Y., Wang Y.-Z., Artiles C.P., Hull T.R., and Price D., Fire Retardancy of a Reactively Extruded
In tumes cent Flame Retardant Polyethylene System Enhanced by Metal Chelates, Polym. Degrad. Stab., 92, 1592-1598,
2007.
21. Zheng Z., Liu Y., Zhang L., and Wang H., Synergistic Effect of Expandable Graphite and intumescent Flame Retardants on the Flame Retardancy and Thermal Stability of Poly pro pyl ene, J. Mater. Sci., 51, 5857-5871, 2016.
22. Deng C., Zhao J., Deng C.-L., Lv Q., Chen L., and Wang Y.-Z., Effect of Two Types of Iron MMTs on the Flame Retardation of LDPE Composite, Polym. Degrad. Stab., 103, 1-10, 2014.
23. Nie S., Zhang M., Yuan S., Dai G., Hong N., and Song L., Thermal and Flame Retardant Properties of Novel
In tumes cent Flame Retardant Low-Density Polyethylene (LDPE) Com pos ites, J. Therm. Anal. Calorim., 109, 999-
1004, 2012.
24. Xia S., Zhang Z., Leng Y., Li B., and Xu M., Synthesis of a Novel Mono-Component Intumescent Flame Retardant and
Its High Efficiency for Flame Retardant Polyethylene, J. Anal. Appl. Pyrolysis, 134, 632-640, 2018.
25. Song S., Ma J., Cao K., Chang G., Huang Y., and Yang J., Syn thesis of a Novel Dicyclic Silicon-/Phosphorus Hybrid
and Its Performance on Flame Retardancy of Epoxy Resin, Polym. Degrad. Stab., 99, 43-52, 2014.
26. Ding S., Liu P., Gao C., Wang F., Ding Y., and Zhang S., Syn ergistic Effect of Cocondensed Nanosilica in Intumescent
Flame-Retardant Polypropylene, Polym. Adv. Technol., 30, 1116-1125, 2019.
27. Ye L., Wu Q., and Qu B., Synergistic Effects of Fumed Sil ica on Intumescent Flame-Retardant Polypropylene, J. Appl.
Polym. Sci., 115, 3508-3515, 2010.
28. Feng C., Zhang Y., Liang D., Liu S., Chi Z., and Xu J., In flu ence of Zinc Borate on the Flame Retardancy and Ther mal Stability of Intumescent Flame Retardant Polypropylene Composites, J. Anal. Appl. Pyrolysis, 115, 224-232, 2015.
29. Gao Y., Wang Q., and Lin W., Ammonium Polyphos phate
Inter calated Layered Double Hydroxide and Zinc Bo rate
as Highly Efficient Flame Retardant Nanofillers for
Poly pro pyl ene, Polymers, 10, 1114-1127, 2018.