زیست‌پلیمرها در درمان آسیب‌های عصب محیطی

نوع مقاله : تالیفی

نویسندگان

1 پژوهشگاه پلیمر و پتروشیمی ایران

2 عضو هیات علمی، پژوهشگاه پلیمر و پتروشیمی ایران،

3 عضو هیات علمی پژوهشگاه پلیمر و پتروشیمی ایران

4 عضو هیات علمی دانشگاه علوم پزشکی ایران

چکیده

امروزه یکی از بیشترین مراجعه­ های بیمارستانی و بالینی مشکلات دستگاه عصبی،مربوط به آسیب­های واردشده پس از حوادث است که زندگی آسیب­ دیدگان را دچار اختلال می­کند. طبق آمار ارائه­ شده، در آمریکا سالانه نیم­ میلیون جراحی به ­دلیل آسیب­ دیدن بافت عصب محیطی ثبت شده که هزینه آن­ها حدود 5/1 میلیارد دلار برآوردشده است. همچنین، در اروپا بیش از300 هزار مورد و در سراسر جهان به­ طور تخمینی بیش از 5 میلیون مورد آسیب واردشده به عصب محیطی سالانه گزارش شده است. تروما شایع‌ترین علت آسیب­ دیدگی اعصاب محیطی است و آسیب­های عصبی به­ طور مکرر باعث تحلیل عضله با کاهش سینگال­های عصبی می‌شود. آسیب­های متنوع عصبی می­توانند ناشی ازصدمه­ های فشاری،کششی و مکانیکی وشکستگی­ ها باشند. در این مقاله، روش­های نوین و زیست­ پلیمرهای به­ کاررفته در درمان آسیب بافت عصب محیطی بررسی می­شوند. به­ طور کلی، روش­های درمان بافت عصبی به دو دسته متداول پیوند­ی (خودپیوند، دگرپیوند و غیرخودی) و نوین مهندسی بافت با استفاده از لوله­های عصبی (لوله­ های عصبی زیستی یاخته­ زدایی­ شده و لوله­ های عصبی سنتزی یا مصنوعی) تقسیم ­بندی می­شوند. لوله­ های عصبی نیز به سه دسته کلی لوله­ های زیستی(پروتئین­ها و پلی­ساکارید­ها)،لوله ­های عصبی سنتزی (پلی­استر­ها، پلی­یورتان­ها و پلی­ال­ها)، لوله­ های عصبی ترکیبی و عصبی رسانا تقسیم­ بندی می­شوند که هر یک از این روش­ها به­ طور مفصل مرور می­شوند.

کلیدواژه‌ها


عنوان مقاله [English]

Biopolymers in the Treatment of Peripheral Nerve Injuries

نویسندگان [English]

  • Ebrahim behtouei 1
  • Mojgan Zandi 2
  • Fahimeh Askari 3
  • Mohammad Pezeshki-Modaress 4
  • Mohammad Javad Fatemi 4
1 Iran Polymer and Petrochemical Institute
2 a member of academic staff Iran Polymer and Petrochemical Institute
3 Assistant Professor at the Iran polymer & petrochemical Institute
4 faculty of Iran University of Medical Sciences
چکیده [English]

Today, one of the most common hospital and clinical visits of nervous system problems is related to the injuries after accidents that disrupt the lives of injured.According to statistics, half a million surgeries are registered annually in the United States due to the peripheral nerve tissue damage, and the cost of these surgeries is estimated at about 1.5 billiondollars.Also,more than300,000 peripheral nerve injuriesare reported annuallyin Europe and over 5 million worldwide.Trauma is the most common cause of peripheral nervous damage, and neurological injuries often cause muscle-traumatic neuronal damage.In this article, new methods of treatment of peripheral nerve tissue are reviewed.In this paper, new methods and biopolymers used in the treatment of peripheral nerve tissue injuries are reviewed.Generally,peripheral nerve tissue treatment classified into grafts (autograft, allograft, and xenograft) and nerve conduits (decellularized nerve conduits and manufactured nerve conduits). Synthetic neurotransmitters are also divided into three general categories of biodegradation (polyesters, proteins and polysaccharides), synthetic (polyesters, polyurethanes and polyols) and hybrid neurotransmitters, whicheach of these methods is discussed in detail.

کلیدواژه‌ها [English]

  • peripheral nerve
  • graft
  • natural polymer
  • synthetic polymer
  • nerve conduits
1. Arslantunali D., Dursun T., Yucel D., Hasirci N., and Hasirci V., Peripheral Nerve Conduits: Technology Update, Med. Devices Evid. Res., 7, 405-424, 2014.
2. https://askabiologist.asu.edu/parts-of-nervous-system, availabale in 22 October 2020.
3. Jortner B.S., Common Structural Lesions of the Peripheral Nerve System, Toxical. Pathol., 48, 96-104, 2019.
4. Manoukian O.S., Barker J.T., Rudraiah S., Arul M.R., Vella A.T., Domb A.J., and Kumbar S.G., Functional Polymeric
Nerve Guidance Conduits and Drug Delivery Strategies for Peripheral Nerve Repair and Regeneration, J. Control.
Release, 317, 78-95, 2019.
5. Seimionow M. and Brezezicki G., Chapter 8: Current Techniques and Concepts in Peripheral Nerve Repair, Int. Rev. Neurobiol., 87, 141-172, 2009.
6. Nichols C.M., Brenner M.J., Fox I.K., Tung T.H., Hunter D.A., Rickman S.R., and Mackinnon S.E., Effect of Motor Versus
Sensory Nerve Grafts on Peripheral Nerve Regeneration, Exp. Neurol., 190, 347-355, 2004.
7. Ray W.Z. and Mackinnon S.E., Management of Nerve Gaps: Autografts, Allografts, Nerve Transfers, and End-to-Side
Neurorrhaphy, Exp. Neurol., 223, 77-85, 2010.
8. Kehoe S., Zhang X.F., and Boyd D., FDA Approved Guidance Conduits and Wraps for Peripheral Nerve Injury :A Review of
Materials and Efficacy, Injury, 43, 553-572, 2012.
9. Dickson K.E., Jordaan P.W., Mohamed D., and Power D.M., Nerve Allograft Reconstruction of Digital Neuromata, J.
Musculoskelet. Surg. Res., 3, 116-122, 2019.
10. Hebebrand D., Zohman G., and Jones N.F., Nerve Xenograft Transplantation: Immunosuppression with FK-506 and RS-
61443, J. Hand. Surg.: Br. Eur. Vol., 22, 304-307, 1997.
11. Jia H., Wang Y., Tong X.J., Liu G.B., Li Q., Zhang L.X., and Sun X.H., Sciatic Nerve Repair by Acellular Nerve Xenografts
Implanted with BMSCs in Rats Xenograft Combined with BMSCs, Synapse, 66, 256-269, 2012.
12. Lasso J.M. and Deleyto E., Current Status in Peripheral Nerve Xenotransplantation, Shuji M. (Eds.), Xenotransplantation-
New Insights, Japan, 13-23, 2017.
13. Hudson S.E., Liu S.Y., and Schmidt C.E., Engineering an Improved Acellular Nerve Graft via Optimized Chemical
Process, Tissue Eng., 10, 1346-1358, 2004.
14. Gilbert T.W., Sellaron T.L., and Badylak S.F., Decellularization of Tissue and Organs, Biomaterials, 27, 3675-3683, 2006.
15. De Filippo R.E., Yoo J.J., and Atala A., Urethal Replacmet using Cell Seeded Tubularized Collagen Matrices, J. Urol.,
168, 1789-1793, 2002.
16. Woods T. and Gratzer P.F., Effectivness of Three Extraction Techniques in the Development of a Decellularized Boneanterior
Cruciate Ligament-Bone Graft, Biomaterials, 26, 7339-7349, 2005.
17. Mizutani H., Letter: Hypersensitivity to Thermosal, N. Engl. J. Med., 289, 1424, 1973.
18. Gamba P.G., Conconi M.T., Piccolo R.L., Zara G., Spinazzi R., and Parnigotto P.P., Experimental Abdominal Wall Defect
Repaired with Acellular Matrix, Pediatr. Surg. Int., 18, 327- 331, 2002.
19. Kim B.S., Yoo J.J., and Atala A., Peripheral Nerve Regenera? on Using Acellular Nerve Grafts, J. Biomed. Mater. Res., 68,
201-209, 2004.
20. Whitlock E., Tuffaha S.H., Luciano J.P., Yan Y., Hunter D.A., Magill C.K. et al., Processed Allografts and Type I Collagen
Conduits for Repair of Peripheral Nerve Gaps, Muscle Nerve, 39, 787-799, 2009.
21. IJPMA F.F.A., Van de Grraf R.C., and Meek M.F., The Early History of Tubulation in Nerve Repair, J. Hand. Surg.: Eur.
Vol., 33, 581-586, 2008.
22. Verreck G., Chun I., Kataria R., Zhang Q., Rosenbalatt J., Decorte A. et al., Preparation and Physicochemical
Characterization of Biodegradable Nerve Guides Containing the Nerve Growth Agent Sabeluzole, Biomaterials, 26, 1307-
1315, 2005.
23. Schmidt C.E. and Leach J.B., Neural Tissue Engineering: Strategies for Repair and Regeneration, Annu. Rev. Biomed.
Eng., 5, 293-347, 2003.
24. Hahn S.K., Chang Y.K., Kim B.S., and Chang H.N., Optimization of Microbial Poly(3-hydroxybutyrate) Recover
Using Dispersions of Sodium Hypochlorite Solution and Chloroform, Biotechnol. Bioeng., 44, 256-261, 1994.
25. Evans D.G.R., Baser M.E., McGaughran J., Sharif S., Howard E., and Moran A., Malignant Peripheral Nerve Sheath Tumours in Neurofibromatosis 1, J. Med. Genet., 39, 311-314, 2002.
26. Nishinari K. and Takahashi R., Interaction in Polysaccharide Solutions and Gels, Curr. Opin. Colloid Interface Sci., 8, 396-
400, 2003.
27. Burdick J.A. and Prestwich G.D., Hyaluronic Acid Hydrogels for Biomedical Applications, Adv. Mater., 23, 41-56, 2011.
28. Suri S. and Schmidt C.E., Cell-laden Hydrogel Constructs of Hyaluronic Acid, Collagen, and Laminin for Neural Tissue
Engineering, Tissue Eng. Part A, 16, 1703-1716, 2010.
29. Guan S., Zhang X.L., Lin X.M., Liu T.Q., Ma X.H., and Cui Z.F., Chitosan/Gelatin Porous Scaffolds Containing Hyaluronic
Acid and Heparan Sulfate for Neural Tissue Engineering, J. Biomater. Sci. Polym. Edit., 24, 999-1014, 2013.
30. Haastert-Talini K., Geuna S., Dahlin L.B., Meyer C., Stenberg L., Freier T. et al., Chitosan Tubes of Varying Degrees
of Acetylation for Bridging Peripheral Nerve Defects, Biomaterials, 34, 9886-9904, 2013.
31. Silva J.M., Silva T.H., Prata M.B., Cerqueira M.T., Pirraco R.P., Giovine M. et al., Potential of Marine Sponge Collagen
Coatings for Skin Regeneration Strategies, J. Tissue Eng. Regen. Med., 7, 6-52, 2013.
32. Aradhya S.V., Frei M., Hybertsen M.S., and Venkataraman L., Van der Waals Interactions at Metal/Organic Interfaces at the Single-Molecule Level, Nat. Mater., 11, 872-876, 2012.
33. Meek M.F. and Coert J.H., Clinical Use of Nerve Conduits in Peripheral-Nerve Repair: Review of the Literature, J.
Reconstr. Microsurg., 18, 97-109, 2002.
34. Vijayavenkataraman S., Kannan S., Cao T., Fuh J.Y.H., Sriram G., and Lu W.F., 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair, Front. Bioeng. Biotechnol., 7,
1-22, 2019.
35. Guo X.L., Xu H.X., He Q.D., Yu Y.X., Ming Z.F., Zheng F.R. et al., Preparation and Characterization of Conductive Polydl-
lactic-acid/Tetra-aniline Conduit for Peripheral Nerve Regeneration, J. Bioact. Compat. Polym., 34, 190-208, 2019.
36. Yin D., Wang X., Yan Y., and Zhang R., Preliminary Studies on Peripheral Nerve Regeneration Using a New Polyurethane
Conduit, J. Bioact. Compat. Polym., 22, 143-159, 2007.
37. Niu Y., Chen K.C., He T., Yu W., Huang S., and Xu K., Scaffolds from Block Polyurethanes Based on Poly(ε-caprolactone)
(PCL) and Poly(ethylene glycol) (PEG) for Peripheral Nerve Regeneration, Biomaterials, 35, 4266-4277, 2014.
38. Rutkowski G.E. and Heath C.A., Development of a Bioartificial Nerve Graft. II. Nerve Regeneration In Vitro, Biotechnol.
Prog., 18, 373-379, 2002.
39. Naghavi Alhosseini S., Moztarzadeh F., Mozafari M., Asghari S., Dodel M., Kargozar S. et al., Synthesis and Characterization of Electrospun Polyvinyl Alcohol Nanofibrous Scaffolds Modified by Blending with Chitosan for Neural Tissue
Engineering, Int. J. Nanomed., 7, 25-34, 2012.
40. Beregthon P.R., Trinkaus-Randall V., and Franzblau C., Modified Hydroxyethylmethacrylate Hydrogels as a
Modelling Tool for the Study of Cell-Substratum Interactions, J. Cell Sci., 33, 9027-9036, 1989.
41. Niimi Y., Matsumine H., Takeuchi Y., Tsunoda S., MiyataM., Yamato M. et al., A Collagen-Coated PGA Conduit for Interpositional-Jump Graft with End-to-Side Neurorrhaphy for Treating Facial Nerve Paralysis in Rat, Microsurgery, 39, 70-80, 2019.
42. Alizadeh-Mohajer M., Raisi A., Farjanikish G., and Mohammadi R., Effect of Local Administration of Verapamil
Combined with Chitosan Based Hybrid Nanofiber Conduit on Transected Sciatic Nerve in Rat, Bull. Emerg. Trauma, 7, 28-
34, 2019.
43. Sun S., Titushkin I., and Cho M., Regulation of Mesenchymal Stem Cell Adhesion and Orientation in 3D Collagen Scaffold
by Electrical Stimulus, Bioelectrochemistry, 69, 133-141, 2006.
44. Rivers B.T.J., Hudson T.W., and Schmidt C.E., Synthesis of a Novel, Biodegradable Electrically Conducting Polymer for
Biomedical Applications, Adv. Funct. Mater., 12, 33-37, 2002.
45. Chronakis I.S., Grapenson S., and Jakob A., Conductive Polypyrrole Nanofibers via Electrospinning: Electrical and
Morphological Properties, Polymer, 47, 1597-1603, 2006.
46. Li M., Guo Y., Wei Y., MacDiarmid A.G., and Lelkes P.I., Electrospinning Polyaniline-Contained Gelatin Nanofibers
for Tissue Engineering Applications, Biomaterials, 27, 2705- 2715, 2006.
47. Chen M.C., Sun Y.C., and Chen Y.H., Electrically Conductive Nanofibers with Highly Oriented Structures and their Potential Application in Skeletal Muscle Tissue Engineering, Acta Biomater., 9, 5562-5572, 2013.
48. Zong X., Bein H., Chung C., Yin L., Fang D., Hsiao B.S., Chu B., and Entcheva E., Electrospun Fine-Textured Scaffolds for
Heart Tissue Constructs, Biomaterials, 26, 5330-5338, 2005.
49. Jaworek A. and Krupa A., Classification of the Modes of EHD Spraying, J. Aerosol Sci., 30, 873-893, 1999.