1. International Energy Outlook. Report Number: DOE/EIA- 0484, 2016.
2. Bajpai P., Biorefinery in the Pulp and Paper Technology, Academic, Amsterdam, Netherland, 1-10, 2013.
3. Patwardhan P.R., Brown R.C., and Shanks B.H., Understanding the Fast Pyrolysis of Lignin, ChemSusChem, 4, 1629-1636,
2011.
4. Rosendahl L., Biomass Combustion Science, Technology and Engineering, Woodhead, Cambridge, United Kingdom, 110-
137, 2013.
5. Ohara H., Biorefinery, Appl. Microbiol. Biotechnol., 62, 474- 477, 2003.
6. Kamm B. and Kamm M., Biorefinery-Systems, Chem. Biochem. Eng. Q., 18, 1-7, 2004.
7. Amidon T.E. and Liu S., Water-Based Woody Biorefinery, Biotechnol. Adv., 27, 542-550, 2009.
8. Zhan S., Chenguang W., Kang B., Xinghua Z., Chiling Y., Renjie D., and Changle P., Py-GC/MS Study of Lignin Pyrolysis and Effect of Catalysts on Product Distribution, Int. J. Agric. Biol. Eng., 10, 214-225, 2017.
9. Klemm D., Kramer F., Moritz S., Lindstrom T., Ankerfors M., Gray D., and Dorris A., Nanocelluloses: A New Family of
Nature-Based Materials, Angew. Chem. Int. Edit. Chem., 50, 5438-5466, 2011.
10. Ko J.K. and Lee S.M., Advances in Cellulosic Conversion to Fuels: Engineering Yeasts for Cellulosic Bioethanol and
Biodiesel Production, Curr. Opin. Biotechnol., 50, 72-80, 2018.
11. Liu H., Sun J., Chang J.S., and Shukla P., Engineering Microbes for Direct Fermentation of Cellulose to Bioethanol, Crit. Rev. Biotechnol., 38, 1089-1105, 2018.
12. Sjöström E., Wood Chemistry: Fundamentals and Applications, San Diego, Academic, 54-84, 1993.
13. Gatenholm P. and Tenkanen M., Hemicelluloses: Science and Technology, American Chemical Society, Washington, 2003.
doi: 10.1021/bk-2004-0864.fw001
14. Bierman C.J., Handbook of Pulping and Papermaking, San Diego, Academic, 1996. doi: 10.1016/B978-0-12-097362-0.
X5000-6
15. Prothmann J., Spégel P., Sandahl M., and Turner C., Identification of Lignin Oligomers in Kraft Lignin Using
Ultra-High-Performance Liquid Chromatography/High- Resolution Multiple-Stage Tandem Mass Spectrometry
(UHPLC/HRMS n), Anal. Bioanal. Chem., 410, 7803-7814, 2018.
16. Basu P., Biomass Gasification and Pyrolysis: Practical Design and Theory, Academic, Boston, USA, 12-100, 2010.
17. Wu L., Jiang X., Lv G., Li X., and Yan J., Interactive Effect of the Sorted Components of Solid Recovered Fuel Manufactured from Municipal Solid Waste by Thermogravimetric and Kinetic Analysis, Waste Manage., 102, 270-280, 2020.
18. Ufodike C.O., Eze V.O., Ahmed M.F., Oluwalowo A., Park J.G., Liang Z., and Wang H., Investigation of Molecular
and Supramolecular Assemblies of Cellulose and Lignin of Lignocellulosic Materials by Spectroscopy and Thermal
Analysis, Int. J. Biol. Macromol., 146, 916-921, 2020.
19. Yang H., Yan R., Chen H., Lee D.H., and Zheng C., Characteristics of Hemicellulose, Cellulose and Lignin
Pyrolysis, Fuel, 86, 1781-1788, 2007.
20. Ghorbannezhad P., Dehghani Firouzabadi M., and Ghasemian A., Catalytic Fast Pyrolysis of Sugarcane Bagasse Pith with
HZSM-5 Catalyst Using Tandem Micro-Reactor-GC-MS, Energy Sour. Part A, 40, 15-21, 2018.
21. Fan L., Zhang Y., Liu S., Zhou N., Chen P., Cheng Y., and Wang Y., Bio-oil from Fast Pyrolysis of Lignin: Effects of
Process and Upgrading Parameters, Bioresour. Technol., 241, 1118-1126, 2017.
22. Ghorbannezhad P., Dehghani Firouzabadi M., Ghasemian A., De Wild P., and Heeres H.J., Biorefinery of Bagasse and Its
Pith by Fast Pyrolysis in Fluidized Bed Reactor, J. Wood For. Sci. Technol (Persian)., 24, 27-40, 2017.
23. Suriapparao D.V. and Vinu R., Effects of Biomass Particle Size on Slow Pyrolysis Kinetics and Fast Pyrolysis Product
Distribution, Waste Biomass Valoriz., 9, 465-477, 2018.
24. Wang T., Meng D., Zhu J., and Chen X., Effects of Pelletizing Conditions on the Structure of Rice Straw-Pellet
Pyrolysis Char, Fuel, 264, 116909, 2020. doi:10.1016/j. fuel.2019.116909
25. Bridgeman T.G., Darvell L.I., Jones J.M., Williams P.T., Fahmi R., Bridgwater A.V. et al., Influence of Particle Size onthe Analytical and Chemical Properties of Two Energy Crops, Fuel, 86, 60-72, 2007.
26. Mani T., Murugan P., Abedi J., and Mahinpey N., Pyrolysis of Wheat Straw in a Thermogravimetric Analyzer: Effect
of Particle Size and Heating Rate on Devolatilization and Estimation of Global Kinetics, Chem. Eng. Res. Design, 88,
952-958, 2010.
27. Aqsha A., Mahinpey N., Mani T., Salak F., and Murugan P., Study of Sawdust Pyrolysis and Its Devolatilisation Kinetics,
Can. J. Chem. Eng., 89, 1451-1457, 2011.
28. Ferdous D., Dalai A.K., Bej S.K., Thring R.W., and Bakhshi N.N., Production of H2 and Medium Btu Gas Via Pyrolysis
of Lignins in a Fixed-Bed Reactor, Fuel Proc. Technol., 70, 9-26, 2001.
29. Jackson M.A., Compton D.L., and Boateng A.A., Screening Heterogeneous Catalysts for the Pyrolysis of Lignin, J. Anal.
Appl. Pyrolysis, 85, 226-230, 2009.
30. Winsley P., Biochar and Bioenergy Production for Climate Change Mitigation, N. Z. Sci. Rev., 64, 5-10, 2007.
31. Meller Harel Y., Elad Y., Rav David D., Borenstein M., Schulcani R., Lew B., and Graber E.R., Biochar Mediates
Systemic Response of Strawberry to Foliar Fungal Pathogens, Plant Soil, 357, 245-257, 2012.
32. Elad Y., Cytryn E., Harel Y.M., Lew B., and Graber E.R., The Biochar Effect: Plant Resistance to Biotic stresses,
Phytopathol. Mediterr., 50, 335-349, 2011.
33. Frenkel O., Jaiswal A.K., Elad Y., Lew B., Kammann C., and Graber E.R., The Effect of Biochar on Plant Diseases: What
Should We Learn While Designing Biochar Substrates?, J. Environ. Eng. Landsc. Manag., 25, 105-113, 2017.
34. Han Y., Boateng A.A., Qi P.X., Lima I.M., and Chang J., Heavy Metal and Phenol Adsorptive Properties of Biochars from
Pyrolyzed Switchgrass and Woody Biomass in Correlation with Surface Properties, J. Environ. Manage. 118, 196-204,
2013.
35. Xu P., Sun C.X., Ye X.Z., Xiao W.D., Zhang Q., and Wang Q., The Effect of Biochar and Crop Straws on Heavy Metal
Bioavailability and Plant Accumulation in a Cd and Pb Polluted Soil, Ecotoxicol. Environ. Saf., 132, 94-100, 2016.
36. Komkiene J. and Baltrenaite E., Biochar as Adsorbent for Removal of Heavy Metal Ions [Cadmium (II), Copper (II),
Lead (II), Zinc (II)] from Aqueous Phase, Int. J. Environ. Sci. Technol., 13, 471-482, 2016.