ساختار غشاهای نانوکامپوزیتی پلیمری مصرفی در تصفیه آب

نوع مقاله : تالیفی

نویسندگان

1 دانشجوی دانشکده نساجی، دانشکده فنی مهندسی، دانشگاه یزد، یزد، ایران

2 عضو هیات علمی

چکیده

در سال‌های اخیر، فناوری تولید و استفاده از غشا به عنوان روش کارآمدی برای تصفیه آب شناخته شده است. استفاده از فناوری غشا %53 از کل فرایندهای جهان برای تولید آب آشامیدنی را شامل می‌شود. آسانی بهره‌برداری، کاهش هزینه، نبود مواد شیمیایی و ظرفیت حذف زیاد از مزایای استفاده از غشا در تصفیه آب به‌شمار می‌رود. غشاهای جداکننده اصولا از نوع پلیمری هستند. غشاهای پلیمری در مقایسه با غشاهای معدنی، دارای انعطاف‌پذیری بیشتر، سازوکار ساده تشکیل حفره، هزینه کمتر و فضای کوچک­تری برای نصب هستند. پلیمرهایی همچون پلی‌وینیل ‌الکل، پلی‌استر ‌سولفون، پلی‌وینیلیدین فلوئورید و پلی‌وینیل‌ کلرید در تولید غشا به‌کار می‌روند. غشاهای پلیمری دارای معایب و کمبودهایی نیز هستند که با اصلاح سطحی با نانومواد می‌توان خواص آن­ها را بهبود بخشید. محدودیت عمده غشاهای پلیمری جداکننده، گرفتگی به‌دلیل آب‌گریزی آن­هاست. اصلاح غشاهای پلیمری با نانومواد فلزی و کربنی، به تولید غشاهای نانوکامپوزیتی با قابلیت ضدگرفتگی منجر می‌شود. نانومواد با آمیخته­سازی، پوشش­دهی سطح با غشای پلیمری، قابلیت گزینش­پذیری، نفوذپذیری، آب‌گریزی، پایداری گرمایی، مقاومت مکانیکی و خاصیت ضدباکتریایی را به آن منتقل می­کنند. در این مقاله گزارشی از ساختار و اصلاح غشاهای پلیمری با فلزاتی چون نقره، مس و تیتانیم دی‌اکسید و ترکیباتی همچون گرافن اکسید ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Structure of Polymeric Nanocomposite Membranes Used in Water Treatment

نویسندگان [English]

  • marzie ghaemizade dare 1
  • Mitra Tavakoli 2
1 Textile engineering department, Faculty of Engineering, Yazd University, Yazd, Iran
2 Academic member
چکیده [English]

In recent years, membrane production technology has been recognized as an efficient technique for water treatment.  Membrane technology contributes up to 53% of the total world processes for production of drinking water. Ease of operation, cost reduction, lack of chemicals and high removal capacity are some of the advantages of using membranes in water treatment.Membrane based separations are commonly based on polymeric membranes because of their higher flexibility, easily pore forming mechanism, lower cost and smaller installation space as compared to inorganic membranes. Polymers such as polyvinyl alcohol (PVA), polyether sulfone (PES), polyvinylidene fluoride (PVDF) and polyvinyl chloride (PVC) are used in the production of polymer membranes. Polymer membranes also have disadvantages that can be improved by surface modification with nanomaterials. The main limitation of separating polymer membranes is fouling due to their hydrophobicity. Modification of polymer membranes with metal and carbon nanomaterials leads to the production of nanocomposite membranes with antifouling capability. Nanomaterials impart high selectivity, permeability, hydrophobicity, thermal stability, mechanical strength and antibacterial properties to polymer membranes by blending, coating and other modification methods the surface or mixed with a polymer membrane. In this paper, report the structure and modification of polymer membranes with metals such as silver, copper and titanium dioxide and compounds such as graphene oxide is reviewed.

کلیدواژه‌ها [English]

  • membranes
  • Nanocomposite
  • water refinery
  • nanomaterials
  • metal oxides
1. Zahid M., Rashid A., Akram S., Rehan Z.A., and Razzaq W., A Comprehensive Review on Polymeric Nanocomposite
Membranes for Water Treatment, J. Membr. Sci. Technol., 8, 179-199, 2018.
2. Shahin M. and Tavakoli M., Fluoropolymer Membranes: Some New Approaches in Preparation and Surface Modi fi ca tion,
Polymerization (Persian), 4, 4-21, 2014.
3. Lia D., Yanc Y., and Wangb H., Recent Advances in Polymer and Polymer Composite Membranes for Reverse and Forward
Osmosis Processes, Prog. Polym. Sci., 61, 104–155, 2016.
4. Barzegari F., Razavi-Nouri M., and Morshedian J., Preparation of Porous Polyolefin Films or Membranes through Stretching
Method, Polymerization (Persian), 8, 3-15, 2018.
5. Bassyouni M., Abdel-Aziz M.H., and Zoromba M.S., A Review of Polymeric Nanocomposite Membranes for Water Purification, Ind. Eng. Chem., 73, 19-46, 2019.
6. Khezli S., Zandi M., and Barzin J., Polyether sul fone- mat Nanfibrous Electrospun Substrates for Application in
Membranes: A Review, Polymerization (Persian), 5, 4-15, 2015.
7. Pourjafar S., Rahimpour A., and Jahanshahi M., Synthesis and Characterization of PVA/PES Thin Film Composite
Nanofiltration Membrane Modified with TiO2 Nanoparticles for Better Performance and Surface Properties, Ind. Eng.
Chem., 18, 1398-1405, 2012.
8. Schulz A.S., Innovations in Nanotechnology for Water Treatment, Nanotechnol. Sci. Appl., 8, 1-17, 2015.
9. Haung L., Zhao S., Wang Z., Wu J., Wang J., and Wang S., In-Situ Immobilization of Silver Nanoparticles for Improving
Permeability, Antifouling and Antibacterial Properties of Ultrafiltration Membrane, J. Mem. Sci., 499, 269-281, 2016.
10. Pan Y., Yu Z., Shi H., Chen Q., and Zeng G., A Novel Antifouling and Antibacterial Surface Functionalized PVDF Ultrafiltration Membrane via Binding Ag/SiO2 Nanocomposites, J. Chem. Technol. Biol., 92, 562-572, 2017.
11. Pereira B.S., Moreti L.O., Silva M.F., Bergamasco R., Piccioli A., Oliveira D.M., and Hechenleitner A.W., Water
Permeability Increase in Ultrafiltration Cellulose Acetate Membrane Containing Silver Nanoparticles, Matt. Res., 20,
887-891, 2017.
12. Zhang A., Zhang Y., Pan G., Xu J., Yan H., and Liu Y., In-Situ Formation of Copper Nanoparticles in Carboxylated Chitosan Layer: Preparation and Characterization of Surface Modified TFC Membrane with Protein Fouling Resistance and Longlasting Antibacterial Properties, Sep. Purif. Technol., 176, 164–172, 2017.
13. Rahimpour A., Madaeni S., and Pirzade K., Polymeric Memberanes: Application, Fabrication and Modification
(Persian), https://www.noandishaan.com/33511
14. Kuvarega A.T., Khumalo N., Dlamini D., and Mamba B.B., Polysulfone/N, Pd Co-doped TiO2 Composite Membranes for
Photocatalytic Dye Degradation, Sep. Purif. Technol., 191, 122–133, 2018.
15. Gnus M., Dudek G., and Turczyn R., The Influence of Filler Type on the Separation Properties of Mixed‑Matrix
Membranes, Chem. Pap., 72, 1095–1105, 2018.
16. Zhao S., Yan W., Shi M., Zhi W., Wang J., and Wang S., Improving Permeability and Antifouling Performance of
Polyethersulfone Ultrafiltration Membrane by Incorporationof ZnO-DMF Dispersion Containing Nano-ZnO and Polyvinylpyrrolidone, J. Membr. Sci., 12, 105-116, 2014.
17. Ambrosio R., Carrillo A., Mota M.L., Torre K., Torrealba R., Moreno M., Vazquez H., Flores J., and Vivaldo I., Polymeric
Nanocomposites Membranes with High Permittivity Based on PVA-ZnO Nanoparticles for Potential Applications in Flexible
Electronics, Polymers, 10, 1370-1387, 2018.
18. Liang S., Xiao K., Mo Y., and Huang X., A Novel ZnO Nanoparticle Blended Polyvinylidene Fluoride Membrane for
Anti-irreversible Fouling, J. Membr. Sci., 394, 184-192, 2012.
19. Zakeritabarnd S.F., Jahanshahi M., and Peyravi M., Photocatalytic Behavior of Induced Membrane by ZrO2–SnO2
Nanocomposite for Pharmaceutical Wastewater Treatment, Catal. Lett., 148, 882–893, 2018.
20. Zinadini S., Zinatizadeh A.I., Rahimi M., and Vatanpour V., Magnetic Field-augmented Coagulation Bath During Phase
Inversion for Preparation of ZnFe2O4/SiO2/PES Nanofiltration Membrane: A Novel Method for Flux Enhancement and
Fouling Resistance, J. Ind. Eng. Chem., 3040, 1–10, 2016.
21. Chan W.F., Marand E., and Martin S.M., Novel Zwitterion Functionalized Carbon Nanotube Nanocomposite Membranes
for Improved RO Performance and Surface Anti-biofouling Resistance, J. Membr. Sci., 509, 125-137, 2016.
22. Orooji Y.,  Faghih M., Razmjou A., Hou J., Moazzam P., Emami N., and Jin W., Nanostructured Mesoporous Carbon
Polyethersulfone Composite Ultrafiltration Membrane with Significantly Low Protein Adsorption and Bacterial Adhesion,
Carbon, 111, 689–704, 2017.
23. Ramezani H., Sharif M., and Shokooh A.K., Graphene-Based Polymer Nanocomposites, Polymerization (Persian), 4, 86-
107, 2014.
24. Tajik S., Jazani O.M., Shokrollahzadeh S., and Latifi S.M., Thin Film Nanocomposite Forward Osmosis Membrane
Prepared by Graphene Oxide Embedded PSf Substrate, J. Part. Sci. Technol., 2, 103-117, 2016.
25. Ma J. and Dong X., Recent Developments of Graphene Oxide-Based Membranes: A Review, Membranes, 7, 52-81,
2017.
26. Faria A.F., Liu C., Xie M., Perreault F., Nghiem L.D., Ma J., and Elimelech M., Thin-film Composite Forward Osmosis
Membranes Functionalized with Graphene Oxide–Silver Nanocomposites for Biofouling Control, J. Mem. Sci., 525,
146–156, 2017.
27. Jin L., Wang Z., Zheng S., and Mi B., Polyamide-Crosslinked Graphene Oxide Membrane for Forward Osmosis, J. Membr.
Sci., 545, 11–18, 2018.
28. Kim S., Lin X., Ou R., Liu H., Zhang X., Simon G.P., Easton C.D., and Wang H., Highly Crosslinked, Chlorine Tolerant
Polymer Network Entwined Graphene Oxide Membrane for Water Desalination, J. Mater. Chem., 5, 1533-1540, 2016.
29. Liu X., Demir N.K., Wu Z., and Li K., Highly Water-Stable Zirconium Metal−Organic Framework UiO-66 Membranes
Supported on Alumina Hollow Fibers for Desalination, J. Am. Chem. Soc., 137, 6999-7002, 2015.
30. Wang N., Liu T., Shen H., Ji S., Li J.R., and Zhang R., Ceramic Tubular MOF Hybrid Membrane Fabricated through In Situ
Layer-by-Layer Self-Assembly for Nanofiltration, Am. Inst. Chem. Eng., 62, 538-546, 2016.
31. Denny M.S. and Cohen S.M., In-Situ Modification of Metal–Organic Frameworks in Mixed-matrix Membranes,
Angew. Chem. Int. Ed., 54, 9029-9032, 2015.