کاربرد نانولوله‌های کربنی در داربست‌های پایه پلیمری

نوع مقاله : تالیفی

نویسندگان

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه شهید مدنی آذربایجان

چکیده

نانولوله‌های کربنی تک‌دیواره و چنددیواره موادی با ویژگی‌های مطلوب و ظرفیت استفاده زیاد در زمینه مهندسی بافت و داربست‌سازی هستند. با وجود این، مسیر برای افزایش کارایی این ماده و ارتقای کیفیت کامپوزیت‌های نانولوله‌های کربنی-پلیمر همچنان باز است تا داربست‌هایی با کیفیت بسیار تولید شود. قابلیت ذاتی نانولوله‌های کربنی برای آسان‌سازی رشد سلولی می‌تواند به ایجاد داربست‌های سه‌بعدی با سطح پلیمری منجر شود که بر کشت نهایی برای احیای بافت سلول‌های الکتروفعال اثرگذار است. عامل‌دارکردن نانولوله‌های کربنی با کمک پلیمرها نیز به بهبود ویژگی‌های داربست کمک شایانی می‌کند. در این مقاله، مشخصه‌های داربست‌های نانولوله‌های کربنی بهبودیافته با پلیمرهای طبیعی و انواع پلیمرهای سنتزی، نظیر پلیمرهای سنتزی رسانا و نارسانا، پلیمرهای دست‌کاری‌شده و کامپوزیت‌های پلیمری مرور شده است. پژوهش‌ها حاکی از آن است، ترکیب نانولوله‌های کربنی و انواع پلیمرها باعث بهبود ویژگی‌های داربست نظیر خواص مکانیکی و الکتریکی، زیست‌تخریب‌پذیری، ساختار و مقدار تخلخل و سمیت شده است. هریک از انواع پلیمرهای به‌کار گرفته‌شده نظیر پلیمرهای طبیعی، پلیمرهای سنتزی رسانا و نارسانا، نانوکامپوزیت‌های پلیمری و پلیمرهای دست‌کاری‌شده بر خواص داربست‌های نانولوله‌های کربنی اثرگذار بوده و تولید داربست از آن‌ها باعث بهبود مشخصه‌های مدنظر شده و گامی به‌سوی افزایش کیفیت داربست‌های پایه پلیمری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Carbon Nanotubes Application in Polymer-Based Scaffolds

نویسندگان [English]

  • Samira Agbolaghi
  • Faezeh Raie
Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

The carbon nanotubes (CNTs) including the single-walled carbon nanotubes (SWCNTs)
and multi-walled carbon nanotubes (MWCNTs) have the desirable properties and
high capacity for application in tissue engineering and scaffolding. However, the scope
of their efficiency and quality enhancement in the CNT-polymer composites is wide open.
The inherent capability of CNTs in facilitating the cellular growth could reflect the threedimensional
scaffolds with the polymer surfaces, affecting the ultimate cultivation for the
tissue regeneration of electroactive cells. The polymers make the CNTs more efficient and
modify the scaffolds' characteristics. In the current paper, the features of CNT, involved in
scaffolds performance, which have been modified through natural polymers and synthesized
polymers including conductive, dielectric, and manipulated polymers and the polymer
composites are reviewed. The combination of CNTs and different types of polymers
improved the scaffolds' characteristics such as mechanical and electrical properties,
biodegradability, structure, porosity, toxicity, etc. Each polymer type in influencing the
characteristics of CNT-incorporated scaffolds and the preparation method of respective
scaffolds improved some features and enhanced the quality of polymer-based scaffolds.

کلیدواژه‌ها [English]

  • carbon nanotube (CNT)
  • scaffold
  • structure
  • polymer
  • mechanical properties
1. Guo B. and Ma P.X., Conducting Polymers for Tissue Engineering, Biomacromolecules, 19, 1764−1782, 2018.
2. Sahoo N.G., Rana S., Cho J.W., Li L., and Chan S.H., Polymer Nanocomposites Based on Functionalized Carbon Nanotubes, Prog. Polym. Sci., 35, 837–867, 2010.
3. Spitalsky Z., Dimitrios T., Papagelis K., and Galiotis C., Carbon Nanotube−Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties, Prog. Polym. Sci., 35, 357–401, 2010.
4. Lalwani G., Patel S.C., and Sitharaman B., Two and Threedimensional All-carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine, Ann. Biomed. Eng., 44, 2020–2035, 2016.
5. Han Z., Tay B., Tan C., Shakerzadeh M., and Ostrikov K., Electrowetting Control of Cassie-to-Wenzel Transitions in Superhydrophobic Carbon Nanotube-based Nanocomposites,
ACS Nano, 3, 3031–3036, 2009.
6. Bauquier S.H., McLean K.J., Jiang J.L., Boston R.C., Lai A., Yue Z., Moulton S.E., Halliday A.J., et al., Evaluation of the Biocompatibility of Polypyrrole Implanted Subdurally in
GAERS, Macromol. Biosci., 17, 1600334(1–8), 2017. doi: 10.1002/mabi.201600334
7. Mac Donald, R.A., Laurenzi B.F., Viswanathan G., Ajayan P.M., and Stegemann J.P., Collagen–Carbon Nanotube Composite Materials as Scaffolds in Tissue Engineering, J. Biomed.
Mater. Res. Part B, 74, 489–496, 2005.
8. Eschenhagen T., Fink C., Remmers U., Scholz H., Wattchow J., Weil J., Zimmermann W., et al., Three-Dimensional Reconstitution of Embryonic Cardiomyocytes in a Collagen Matrix:
A New Heart Muscle Model System, Fed. Am. Soc. Exp. Biol. J, 11, 683–694, 1997.
9. Mac Donald R.A., Voge C.M., Kariolis M., and Stegemann J.P., Carbon Nanotubes Increase the Electrical Conductivity of Fibroblast-Seeded Collagen Hydrogels, Acta Biomater., 4,
1583–1592, 2008.
10. Yu H., Zhao H., Huang C., and Du Y., Mechanically and Electrically Enhanced CNT–Collagen Hydrogels as Potential Scaffolds for Engineered Cardiac Constructs, ACS Biomater.
Sci. Eng., 3, 3017–3021, 2017.
11. Kharaziha M., Shin S.R., Nikkhah M., Topkaya S.N., Masoumi N., Annabi N., Dokmeci M.R., and Khademhosseini A., Tough and Flexible CNT-Polymeric Hybrid Scaffolds for Engineering
Cardiac Constructs, Biomaterials, 35, 7346–7354, 2014.
12. Shin S.R., Bae H., Cha J.M., Mun J.Y., Chen Y., Tekin H., Shin H. et al., Carbon Nanotube Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation, ACS Nano, 6,
362–372, 2012.
13. Li D., Müller M.B., Gilje S., Kaner R.B., and Wallace G.G., Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 3, 101–105, 2008.
14. Liu Y., Tang J., Chen X., and Xin J.H., Decoration of Carbon Nanotubes with Chitosan, Carbon, 43, 3178–3180, 2005.
15. Tkac J., Whittaker J.W., and Ruzgas T., The Use of Single Walled Carbon Nanotubes Dispersed in a Chitosan Matrix for Preparation of a Galactose Biosensor, Biosens. Bioelectron.,
22, 1820–1824, 2007.
16. Watts P.C.P., Hsu W.K., Chen G.Z., Fray D.J., Kroto, H.W., and Walton D.R.M., A Low Resistance Boron-Doped Carbon Nanotube–Polystyrene Composite, J. Mater. Chem., 11,
2482–2488, 2001.
17. Wescott J.T., Kung P., and Maiti A., Conductivity of Carbon Nanotube Polymer Composites, Appl. Phys. Lett., 90, 033116(1–3), 2007. doi: 10.1063/1.2432237
18. Liu Y., Qu X., Guo H., Chen H., Liu B., and Dong S., Facile Preparation of Amperometric Laccase Biosensor with Multifunction Based on The Matrix of Carbon Nanotubes–Chitosan
Composite, Biosens. Bioelectron., 21, 2195–2201, 2006.
19. Qian L. and Yang X., Composite Film of Carbon Nanotubes and Chitosan for Preparation of Amperometric Hydrogen Peroxide Biosensor, Talanta, 68, 721–727, 2006.
20. Zhang M., Smith A., and Gorski W., Carbon Nanotube−Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes, Anal. Chem., 76, 5045–5050, 2004.
21. Lau C., Cooney M.J., and Atanassov P., Conductive Macroporous Composite Chitosan−Carbon Nanotube Scaffolds, Langmuir, 24, 7004–7010, 2008.
22. Rivnay J., Inal S., Collins B.A., Sessolo M., Stavrinidou E., Strakosas X., Tassone C., Delongchamp D.M., et al., Structural Control of Mixed Ionic and Electronic Transport in Conducting Polymers, Nat. Commun., 7, 11287 (1-9), 2016. doi: 10.1038/ncomms11287
23. Cao L., Su D., Su Z., and Chen X., Fabrication of Multiwalled Carbon Nanotube/Polypropylene Conductive Fibrous Membranes by Melt Electrospinning, Ind. Eng. Chem. Res., 53, 2308–2317, 2014.
24. Armentano I., Dottori M., Puglia D., and Kenny J.M., Effects of Carbon Nanotubes (CNTs) On the Processing and In-Vitro Degradation of Poly(DL-lactide-co-glycolide)/CNT Films, J.
Mater. Sci. Mater. Med., 19, 2377–2387, 2008.
25. Lin C., Wang Y., Lai Y., Yang W., Jiao F., Zhang H., Ye S., and Zhang Q., Incorporation of Carboxylation Multiwalled Carbon Nanotubes into Biodegradable Poly(lactic-co-glycolic
acid) for Bone Tissue Engineering, Colloids Surf. B, 83, 367–375, 2011.
26. Müller M.T., Krause B., and Pötschke P., A Successful Approach to Disperse CNTs in Polyethylene by Melt Mixing Using Polyethylene Glycol as Additive, Polymer, 53, 3079–
3083, 2012.
27. Ra E.J., An K.H., Kim K.K., Jeong S.Y., and Lee Y.H., Anisotropic Electrical Conductivity of CNT/PAN Nanofiber Paper, Chem. Phys. Lett., 413, 188–193, 2005.
28. Li Z.M., Li S.N., Yang M.B., and Huang R., A Novel Approach to Preparing Carbon Nanotube Reinforced Thermoplastic Polymer Composites, Carbon, 11, 2413–2416, 2005.
29. Hotta S., Rughooputh S.D.D.V., and Heeger A.J. Conducting Polymer Composites of Soluble Polythiophenes in Polystyrene, Synth. Met., 22, 79–87, 1987.
30. Ikkala O.T., Lakso J., Vakiparta K., Virtanen E., Ruohonen H., Jarvinen H., Taka T., et al., Counter-Ion Induced Processibility of Polyaniline: Conducting Melt Processible Polymer Blends, Synth. Met., 69, 97–100, 1995.
31. Fizazi A., Moulton J., Pakbaz K., Rughooputh S.D.D.V., Smith P., and Heeger A.J., Percolation of a Self-Assembled Network: Decoration of Polyethylene Gels with Conducting
Polymers, Phys. Rev. Lett., 64, 2180–2183, 1990.
32. Hermant M.C., van der Schoot P., Klumperman B., and Koning C.E., Probing the Cooperative Nature of The Conductive Components in Polystyrene/Poly(3,4 ethylenedioxythiophen
e):Poly(styrene sulfonate)−Single-Walled Carbon Nanotube Composites, ACS Nano, 4, 2242–2248, 2010.