مروری بر انواع نانوکامپوزیت‌های برپایه پلیمرهای کوئوردینانسی نانومتخلخل

نوع مقاله : تالیفی

نویسندگان

گروه شیمی، دانشگاه الزهرا، ونک، تهران، ایران

چکیده

طراحی موادی با ساختار غیراکسیدی و تخلخل ریز در حد نانومتر، از این جهت جالب توجه هستند که به‌طور کلی به شبکه‌های فضایی چهاروجهی زئولیت‌ها محدود نمی‌شوند. فضای داخلی این دسته از جامدات نانومتخلخل می‌تواند قطبیت، موقعیت فضایی، عملکرد و واکنش‌پذیری متفاوتی نسبت به زئولیت‌های آلومینیم سیلیکات داشته باشد. پلیمرهای کوئوردینانسی نانومتخلخل یا همان چارچوب‌های فلزی-آلی (MOFs)، از جدیدترین خانواده‌های مواد نانومتخلخل بلوری هستند که امروزه، توجه بسیاری را به خود جلب کرده‌اند. چارچوب این مواد شامل یون‌های فلزی و اتصال‌دهنده‌های آلی دو، سه یا چنددندانه هستند. MOFها دارای ویژگی‌های منحصر به‌فردی از قبیل چگالی کم، مساحت سطح ویژه زیاد و تنظیم‌‌پذیر، تخلخل و حجم حفره زیاد، پایداری گرمایی مناسب و سنتز آسان هستند که به کاربرد گسترده آن‌ها در ذخیره‌سازی و جداسازی گازها، به‌عنوان حامل‌های انتقال دارو، حسگرها و غیره منجر شده است. هر کامپوزیت مبتنی بر MOF ماده جدیدی است که خواص عملکردی ویژه‌ای را نشان می‌دهد. ویژگی‌های جدید درخور توجه و ماهیت چندمنظوره کامپوزیت‌های در حال ظهور MOF، ضرورت کاربردهای نوآورانه صنعتی را در محدوده گسترده‌ای از زمینه‌های مهم فناوری برمی‌انگیزد. در سال‌های اخیر، پژوهش و استفاده از انواع نانوکامپوزیت‌های بر پایه ترکیبات MOF به‌دلیل کاربردهای فراوان این دسته از مواد در ذخیره‌سازی و جداسازی گازها، به‌عنوان کاتالیزگرهای ناهمگن، غشا، حسگر و بسیاری از کاربردهای دیگر توسعه یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Different Types of Nanocomposites Based on Nanoporous Coordination Polymers: A Review

نویسندگان [English]

  • shokoofeh Geranmayeh
  • Shaghayegh Mastali
Department of Chemistry, Alzahra University, Vanak, Tehran, Iran
چکیده [English]

Designing materials with a non-oxide structure with a fine porosity and nanoscale porosity are attractive because they are not generally limited to four-dimensional spatial networks of zeolites. The internal space of these types of nanoporous solids can be completely different in polarity, spatial position, performance, and reactivity, quite different from that of conventional aluminum silicate zeolites. Nanoporous coordination polymer or metal-organic framework (MOFs), are among the newest range of crystalline nanoporous materials, which have attracted wide attention to these days. The framework of these materials usually consists of metal ions and polydentate organic connectors. MOFs have unique properties such as low density, extremely high and tunable surface area, high porosity, high cavity volume, good thermal stability and easy synthesis, resulting in their widespread use in storage and separation of gases, as the drug delivery carrier, sensors, GC columns adsorbent, and etc. Each MOF-based composite shows a new material with particular functional properties. The remarkable new feature and the multi-purpose nature of the emerging MOF composites stimulate the emergence of innovative industrial applications in a wide range of important technological fields. In recent years, the research and use of a variety of nanocomposites based on MOF compounds have been improved for many uses of this material, for example in the storage and separation of gases, as heterogeneous catalysts, as membranes and sensors, and many other applications.

کلیدواژه‌ها [English]

  • coordination polymer
  • metal-organic framework (MOF)
  • Nanocomposite
  • nanoporous material
  • nanoparticle
1. Wang M., Ye C., Bao S., Zhang Y., Yu Y., and Xu M., Carbon Nanotubes Implanted Manganese-Based MOFs for Simultaneous Detection of Biomolecules in Body Fluids, Analyst, 141, 1279–1285, 2016.
2. Rowsell J.L.C. and Yaghi O.M., Metal-Organic Frameworks: A New Class of Porous Materials, Microporous. Mesoporous. Mater., 73, 3–14, 2004.
3. Hajjar R., Volkringer C., Loiseau T., Guillou N., Margiolaki I., Guillou N., Fink G., Férey G., Morais C., and Taulelle F., 71Ga Slow-CTMAS NMR and Crystal Structures of MOF-Type Gallium Carboxylates with Infinite Edge-Sharing Octahedra
Chains (MIL-120 and MIL-124), Chem. Mater., 23, 39–47, 2011.
4. Zhu Q. and Xu Q., Metal-Organic Framework Composites, Chem. Soc. Rev., 43, 5468–5512, 2014.
5.Xia W., Mahmood A., Zou R., and Xu Q., Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion, Energy Environ. Sci., 8, 1837-1866, 2015.
6.Banerjee A., Singh U., Srinivasan M., Ogale S., and Aravindan V., Synthesis of CuO Nanostructures from Cu-based Metal
Organic Framework (MOF-199) for Application as Anode for Li-ion Batteries, Nano Energy, 2, 1158–1163, 2013.
7. Kaneti Y., Tang J., Salunkhe R., Jiang X., Yu A., Wu K., and Yamauchi Y., Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks, Adv. Mater., 29, 1-40, 2017.
8. Dhakshinamoorthy A. and Garcia H., Catalysis by Metal Nanoparticles Embedded on Metal–Organic Frameworks, Chem. Soc. Rev., 41, 5262-5284, 2012.
9. Chen L., Luque R., and Li Y., Encapsulation of Metal Nanostructures into Metal–Organic Frameworks, Dalton Trans., 47, 3663-3668, 2018.
10.Luz I., Xamena F., and Corma A., Bridging Homogeneous and Heterogeneous Catalysis with MOFs : ‘‘Click” Reactions with Cu-MOF Catalysts, J. Catal., 276, 134–140, 2010.
11.Schmid G., Large Clusters and Colloids. Metals in the Embryonic State, Chem. Rev., 92, 1709-1727, 1992.
12.Cui Y., Yue Y., Qian G., and Chen B., Luminescent Functional Metal-Organic Frameworks, Chem. Rev., 112, 1126–1162, 2012.
13.Tran U., Le K., and Phan N., Expanding Applications of Metal- Organic Frameworks: Zeolite Imidazolate Framework ZIF-8 as an Efficient Heterogeneous Catalyst for the Knoevenagel Reaction, ACS Catal., 1, 120–127, 2011.
14.Jiang D., Mallat T., Krumeich F., and Baiker A., Copper-Based Metal-Organic Framework for the Facile Ring-Opening of Epoxides, J. Catal., 257, 390–395, 2008.
15.Zlotea C., Campesi R., Cuevas F., Leroy E., Dibandjo Ph., Volkringer C., Loiseau T., Fe´rey G., and Latroche M., Pd Nanoparticles Embedded into a Metal-Organic Framework: Synthesis, Structural Characteristics, and Hydrogen Sorption Properties, J. Am. Chem. Soc., 132, 2991–2997, 2010.
16.Yang Y., Dong H., Wang Y., Wang Y., Liu N., Wang D., and Zhang X, A Facile Synthesis for Porous CuO/Cu2O Composites Derived from MOFs and their Superior Catalytic Performance for CO Oxidation, Inorg. Chem. Commun., 86, 74–77, 2017.
17.Wang W., Li Y., Zhang R., He D., Liu H., and Liao S., Metal- Organic Framework as a Host for Synthesis of Nanoscale Co3O4 as an Active Catalyst for CO Oxidation, Catal. Commun., 12, 875–879, 2011.
18.Lu G., Li S., Guo Z., Farha O., Hauser B., Qi X., Wang Y., Wang X., Han S., Liu X., DuChene J., Zhang H., Zhang Q., Chen X., Ma J., Loo S.C.J., Wei W., Yang Y., Hupp J., and Huo F., Imparting Functionality to a Metal–Organic Framework
Material by Controlled Nanoparticle Encapsulation, Nat. Chem., 4, 310–316, 2012.
19.Müller M., Hermes S., Kähler K., Van Den Berg M., Muhler M., and Fischer R., Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis, Chem. Mater., 20, 4576-4587, 2008.
20.Bagheri A., Taghizadeh M., Behbahani M., Asgharinezhad A., Salarian M., Dehghani A., Ebrahimzadeh H., and Amini M., Synthesis and Characterization of Magnetic Metal-Organic Framework (MOF) as a Novel Sorbent , and its Optimization by Experimental Design Methodology for Determination of Palladium in Environmental Samples, Talanta, 99, 132–139, 2012.
21.Hoffmann F., Cornelius M., Morell J., and Fröba M., Silica-Based Mesoporous Organic–Inorganic Hybrid Materials, Angew. Chem. Int. Ed., 45, 3216–3251, 2006.
22.Liu Y., Eubank J., Cairns A., Eckert J., Kravtsov V., Luebke R., and Eddaoudi M., Assembly of Metal–Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks : A Porous MOF with SOC Topology and High Hydrogen Storage, Angew. Chem. Int. Ed., 119, 3342-3347, 2007.
23.Karimi Z. and Morsali A., Modulated Formation of Metal-Organic Frameworks by Oriented Growth Over Mesoporous Silica, J. Mater. Chem. A, 1, 3047-3054, 2013.
24.Lin W., Rieter W., and Taylor K., Modular Synthesis of Functional Nanoscale Coordination Polymers, Angew. Chem. Int. Ed., 48, 650–658, 2009.
25.Taylor K., Rieter W., and Lin W., Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging, J. Am. Chem. Soc., 130, 14358–14359, 2008.
26.Imaz I., Hernando J., Ruiz-molina D., and Maspoch D., Metal– Organic Spheres as Functional Systems for Guest Encapsulation, Angew. Chem. Int. Ed., 48, 2325–2329, 2009.
27.Shen J., Zhu Y., Yang X., and Li C., Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices, Chem. Commun., 48, 3686–3699, 2012.
28.Biswal B., Shinde D., Pillai V., and Banerjee R., Stabilization of Graphene Quantum Dots (GQDs) by Encapsulation Inside Zeolitic Imidazolate Framework Nanocrystals for Photoluminescence Tuning, Nanoscale, 5, 10556–10561, 2013.
29.Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., and Margiolaki I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309, 2040–2042, 2005.
30.Sun C., Liu S., Liang D., Shao K., Su Z., and Ren Y., Highly Stable Crystalline Catalysts Based on a Microporous Metal-Organic Framework and Polyoxometalates, J. Am. Chem. Soc., 131, 1883–1888, 2009.
31. Ma F., Liu S., Sun C., Liang D., Ren G., Wei F., Chen Y., and Su Z., A Sodalite-Type Porous Metal-Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate, J. Am. Chem. Soc., 133, 4178–4181, 2011.
32.Biemmi E., Scherb C., and Bein T., Oriented Growth of the Metal Organic Framework Cu3(BTC)2 (H2O)3.xH2O Tunable with Functionalized Self-Assembled Monolayers, J. Am. Chem. Soc., 129, 8054–8055, 2007.
33.Zhu Q., Li J., and Xu Q., Immobilizing Metal Nanoparticles to Metal-Organic Frameworks with Size and Location Control
for Optimizing Catalytic Performance, J. Am. Chem. Soc., 135, 10210–10213, 2013.
34.Han T., Li C., Guo X., Huang H., Liu D., and Zhong C., In-Situ Synthesis of SiO2@MOF Composites for High-Efficiency Removal of Aniline from Aqueous Solution, Appl. Surf. Sci., 390, 506–512, 2016.
35.Shekhah O.,Wang H., Zacher D., Fischer R., and Wöll C., Growth Mechanism of Metal-Organic Frameworks: Insights Into the Nucleation by Employing A Step-By-Step Route, Angew. Chem. Int. Ed., 48, 5038–5041, 2009.