راه‌کارهای افزایش بازده سلول‌های خورشیدی پلیمری برپایه پلی(3-هگزیل‌تیوفن) و فنیل-C-بوتیریک اسید متیل استر

نوع مقاله: تالیفی

نویسنده

گروه مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه شهید مدنی آذربایجان

چکیده

در دهه‌های اخیر از میان سامانه‌های فوتوولتایی پایه پلیمری، سلول‌های خورشیدی پلی(3-هگزیل‌تیوفن) (P3HT) فضاویژه و فنیل-C-‌بوتیریک اسید متیل استر (PCBM) توجه زیادی را جلب کرده‌اند. این نوع سلول‌های خورشیدی اگرچه دارای مزیت‌هایی نظیر وزن کم، قیمت اندک و انعطاف‌پذیری هستند، اما بازده تبدیل آن‌ها در مقایسه با سایر انواع سلول‌های فوتوولتایی به‌نسبت کم است. بنابراین، پژوهشگران شاخه‌های مختلف درصدد برآمده‌اند تا با راه‌کارهای مختلف بازده تبدیل توان را به‌واسطه دست‌کاری شکل‌شناسی لایه فعال، بهبود بخشند. شکل‌شناسی لایه فعال، نقش اساسی و بسیار تعیین‌کننده در عملکرد سلول‌های خورشیدی پلیمری دارد. به‌گونه‌ای که شکل‌شناسی متشکل از جدایش فازی اجزای خالص الکترون‌دهنده (P3HT) و الکترون‌گیرنده (PCBM) که به‌شکل نواحی متصل به هم در کنار یکدیگر قرار دارند، شکل‌شناسی بهینه محسوب می‌شود. سلول‌های خورشیدی برای داشتن عملکرد مناسب نیازمند مسیرهایی از شبکه‌های متصل به هم اجزای الکترون‌دهنده و الکترون‌گیرنده هستند که از راه تبلور و جدایش فاز نانومقیاس در لایه فعال ایجاد می‌شوند. در این مقاله، به مرور اجمالی روش‌های افزایش بازده تبدیل سلول‌های خورشیدی P3HT:PCBM نظیر روش‌های تهیه و تابکاری لایه فعال، استفاده از افزودنی‌های مختلف پلیمری و غیرپلیمری، بهره‌گیری از روش‌های خاص از قبیل تهیه نانوالیاف و نانوکره‌های هسته-پوسته و الگوی آندی و همچنین کنترل بلورینگی و جهت‌گیری زنجیرهای الکترون‌دهنده پرداخته می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Procedures for Increasing the Efficiency of Polymeric P3HT:PCBM Solar Cells

نویسنده [English]

  • Samira Agbolaghi
Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
چکیده [English]

In the past decades, the solar cells based on regioregular poly(3-hexylthiophene) (P3HT) and phenyl-C-butyric acid methyl ester (PCBM) have attracted a large attention among the polymeric photovoltaics. Although the P3HT:PCBM solar cells possess some advantages such as low-weight, low-cost and flexibility, their power conversion efficiency (PCE) is relatively less than other types of photovoltaic systems. Thereby, the researchers from various fields have focused on different methodologies to increase the PCE by manipulating the active layer morphology, which plays a substantial role in the efficacy of polymeric solar cells. A morphology with the pure phase separated donor (P3HT) and acceptor (PCBM) components which are connected to each other is an optimized morphology. The solar cells demand the pathways of interconnected donors and acceptors to reach an appropriate function, which could be originated from the crystallization and nanoscale phase separation in the active layer. This work is devoted to review the effective procedures to enhance the PCE of P3HT:PCBM photovoltaics including preparation and annealing methods, use of distinct polymeric and non-polymeric additives, some particular methods such as developing the core-shell nanofibers and nanospheres and anodic patterns as well as controlling the crystallinity and orientation of the donor chains.

کلیدواژه‌ها [English]

  • solar cell
  • poly(3-hexylthiophene) P3HT
  • phenyl-c-butyric acid PCBM
  • power conversion efficiency (PCE)
  • morphology
1.Huang D.M., Mauger S.A., Friedrich S., George S.J., Dumitriu- LaGrange D., Yoon S., and Moulé A.J., The Consequences
of Interface Mixing on Organic Photovoltaic Device Characteristics, Adv. Funct. Mater., 21, 1657-1665, 2011.
2. Nelson J., The Physics of Solar Cells, London: Imperial College, Vol. 57, 2003.
3. Pivrikas A., Neugebauer H., and Sariciftci N.S., Influence of Processing Additives to Nano-Morphology and Efficiency of Bulk-Heterojunction Solar Cells: A Comparative Review, Sol. Energy, 85, 1226-1237, 2011.
4. Wu J.L., Chen F.C., Hsiao Y.S., Chien F.C., Chen P., Kuo C.H., Huang M.H., and Hsu C.S., Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells, ACS Nano, 5, 959-967, 2011.
5. Guo X., Cui C.H., Zhang M.J., Huo L.J., Huang Y., Hou J.H., and Li Y.F., High Efficiency Polymer Solar Cells Based on Poly(3-hexylthiophene)/Indene-C70 Bisadduct with Solvent Additive, Energy Environ. Sci., 5, 7943-7949, 2012.
6. Vanlaeke P., Vanhoyland G., Aernouts T., Cheyns D., Deibel C., Manca J., Heremans P., and Poortmans J., Polythiophene Based Bulk Heterojunction Solar Cells: Morphology and its Implications, Thin Solid Films, 511, 358-361, 2006.

7.Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., and Yang Y., High-Efficiency Solution Processable Polymer Photovoltaic Cells by Self-Organization of Polymer Blends, Nat. Mater., 4, 864-868, 2005.
8. Hoth C.N., Schilinsky P., Choulis S.A., and Brabec C.J., PrintingHighly Efficient Organic Solar Cells, Nano Lett., 8, 2806-2813, 2008.
9. Oh J.Y., Shin M., Lee T.I., Jang W.S., Lee Y.J., Kim C.S., Kang J.W., Myoung J.M., Baik H.K., and Jeong U., Highly Bendable Large-Area Printed Bulk Heterojunction Film Prepared by the Self-Seeded Growth of Poly(3-hexylthiophene) Nanofibrils, Macromolecules, 46, 3534-3543, 2013.
10.  Ma W., Kim J.Y., Lee K., and Heeger A.J., Effect of the Molecular Weight of Poly(3-hexylthiophene) on the Morphology and Performance of Polymer Bulk Heterojunction Solar Cells, Macromol. Rapid Commun., 28, 1776-1780, 2007.
11. Kim H.S., Na J.Y., Kim S., and Park Y.D., Effect of the Cooling Rate on the Thermal Properties of a Polythiophene Thin Film, J. Phys. Chem. C, 119, 8388-8393, 2015.
12. Li G., Shrotriya V., Yao Y., and Yang Y., Investigation of Annealing Effects and Film Thickness Dependence of Polymer Solar Cells Based on Poly(3-hexylthiophene), J. Appl. Phys., 98, 043704, 2005.
13. Liao H.C., Tsao C.S., Huang Y.C., Jao M.H., Tien K.Y., Chuang C.M., Chen C.Y., Su C.J., Jeng U.S., Chend Y.F., and Su W.F., Insights into Solvent Vapor Annealing on the Performance of Bulk Heterojunction Solar Cells by a Quantitative Nanomorphology Study, RSC Adv., 4, 6246-6253, 2014.
14. Huang Y.C., Chia H.C., Chuang C.M., Tsao C.S., Chen C.Y., and Su W.F., Facile Hot Solvent Vapor Annealing for High Performance Polymer Solar Cell Using Spray Process, Sol. Energy Mater. Sol. Cells, 114, 24-30, 2013.
15. Miller A.J., Hatton R.A., and Silva S.R.P., Interpenetrating Multiwall Carbon Nanotube Electrodes for Organic Solar Cells, Appl. Phys. Lett., 89, 133117, 2006.
16. Sun Z., Xiao K., Keum J.K., Yu X., Hong K., Browning J., Ivanov I.N., Chen J., Alonzo J., Li D., Sumpter B.G., Payzant E.A., Rouleau C.M., and Geohegan D.B., PS-b-P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics, Adv. Mater., 23, 5529-5535, 2011.
17. Peet J., Soci C., Coffin R.C., Nguyen T.Q., Mikhailovsky A., Moses D., and Bazan G.C., Method for Increasing the Photoconductive Response in Conjugated Polymer/Fullerene Composites, Appl. Phys. Lett., 89, 252105, 2006.
18. Chen H.Y., Yang H., Yang G., Sista S., Zadoyan R., Li G., and Yang Y., Fast-Grown Interpenetrating Network in Poly(3-hexylthiophene): Methanofullerenes Solar Cells Processed with Additive, J. Phys. Chem. C, 113, 7946-7953, 2009.
19. Yao Y., Hou J., Xu Z., Li G., and Yang Y., Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells, Adv. Funct. Mater., 18, 1783-1789, 2008.
20. Wu J.S., Lin C.T., Wang C.L., Cheng Y.J., and Hsu C.S., New Angular-Shaped and Isomerically Pure Anthradithiophene with Lateral Aliphatic Side Chains for Conjugated Polymers: Synthesis, Characterization, and Implications for Solution-Prossessed Organic Field-Effect Transistors and Photovoltaics, Chem. Mater., 24, 2391-2399, 2012.
21.Wu C.G., Chiang C.H., and Han H.C., Manipulating the Horizontal Morphology and Vertical Distribution of the Active Layer in BHJ-PSC with a Multi-Functional Solid Organic Additive, J. Mater. Chem. A, 2, 5295-5303, 2014.
22. Malik S. and Nanti A.K., Crystallization Mechanism of Regioregular Poly(3-alkyl thiophene), J. Polym. Sci., Part B: Polym. Phys., 40, 2073-2085, 2002.
23. Kim J.S., Park Y., Lee D.Y., Lee J.H., Park J.H., Kim J.K., and Cho K., Poly(3-hexylthiophene) Nanorods with Aligned Chain Orientation for Organic Photovoltaics, Adv. Funct. Mater., 20, 540-545, 2010.
24. Kim M., Jo S.B., Park J.H., and Cho K., Flexible Lateral Organic Solar Cells with Core–Shell Structured Organic Nanofibers, Nano Energy, 18, 97-108, 2015.
25. Kamkar D.A., Wang M., Wudl F., and Nguyen T.Q., Single Nanowire OPV Properties of a Fullerene-Capped P3HT Dyad Investigated Using Conductive and Photoconductive AFM, ACS Nano, 6, 1149-1157, 2012.
26. Crossland E.J., Tremel K., Fischer F., Rahimi K., Reiter G., Steiner U., and Ludwigs S., Anisotropic Charge Transport in Spherulitic Poly(3-hexylthiophene) Films, Adv. Mater., 24, 839-844, 2012.
27. DeLongchamp D.M., Kline R.J., Fischer D.A., Richter L.J., and Toney M.F., Molecular Characterization of Organic Electronic Films, Adv. Mater., 23, 319-337, 2011.
28. Zhao G., He Y., and Li Y., 6.5% Efficiency of Polymer Solar Cells Based on Poly(3-hexylthiophene) and Indene-C60

Bisadduct by Device Optimization, Adv. Mater., 22, 4355-4358, 2010.
29. Ma J., Hashimoto K., Koganezawa T., and Tajima K., End-on Orientation of Semiconducting Polymers in Thin Films Induced by Surface Segregation of Fluoroalkyl Chains, J. Am. Chem. Soc., 135, 9644-9647, 2013.
30.Balderrama V.S., Estrada M., Viterisi A., Formentin P., Pallarés J., Ferré-Borrull J., Palomares E., and Marsal L.F., Correlation between P3HT Inter-Chain Structure and Jsc of P3HT: PC[70] BM Blends for Solar Cells, Microelectron. Reliab., 53, 560-564, 2013.