مروری بر غشاهای پلیمری به‌کار رفته در بازسازی هدایت‌شده بافت پیرادندانی: بخش 1

نوع مقاله : گزارش

نویسندگان

1 دانشگاه آزاد اسلامی واحد تهران مرکزی

2 پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

پریودنتیت از شایع‌ترین بیماری‌های دهان و دندان است که به تخریب بافت‌های پیرادندانی منجر می‌شود. در سال‌های اخیر، روش‌های متفاوتی برای بازسازی این بافت‌ها بررسی شده‌اند. بازسازی هدایت‌شده بافت، نوعی فن جراحی است که با استفاده از غشا به‌طور فیزیکی از بافت آسیب‌دیده در برابر مهاجرت پرتعداد سلول‌های پرسرعت، نظیر سلول‌های اپیتلیوم و بافت همبند لثه، محافظت کرده و بستر مناسبی برای استقرار و تکثیر سلول‌های بافت مدنظر دارای سرعت مهاجرت کمتر، مانند رباط پیرادندانی و استخوان آلوئول، فراهم می‌کند. در این مطالعه، انواع غشاهای پلیمری پرکاربرد در بازسازی ضایعات پیرادندانی بر پایه پلیمرهای طبیعی و سنتزی معرفی شده‌اند. پلیمرهای طبیعی مرسوم، شامل پلی‌ساکاریدها و پلی‌پپتیدها بوده و پلیمرهای سنتزی معمولا بر پایه پلی‌استرها هستند. هر یک از این پلیمرها دارای معایب و مزایایی هستند. به‌عنوان مثال، اگرچه غشاهای برپایه پلیمرهای طبیعی دارای خواص زیستی مناسبی هستند، ولی استحکام مکانیکی ‌آن‌ها معمولا کم و چرخه تخریب کوتاهی دارند. در مقابل، غشاهای برپایه پلیمرهای سنتزی، از زیست‌تخریب‌پذیری قابل کنترل و استحکام مکانیکی مناسبی برخوردارند. با وجود این، فعالیت زیستی ‌آن‌ها به خوبی پلیمرهای طبیعی نیست. همچنین در برخی از موارد، محصولات تخریب ‌آن‌ها می‌توانند سبب بروز واکنش‌های التهابی جسم خارجی شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Polymeric Membranes Used for Guided Periodontal Tissue Regeneration: A Review-Part I

نویسندگان [English]

  • Saeed Beigi-Broujeni 1
  • Samal Babanzadeh 2
1
2
چکیده [English]

Periodontitis is one of the most widespread oral and dental diseases which results in damaging the periodontal tissues and finally may lead to healthy teeth losses. Recent surveys show that most adult in USA are suffering from chronic periodontits. In recent years, different methods have been used to reconstruct periodontal defects. Guided tissue regeneration (GTR) is a surgical procedure that uses barrier membranes to protect physically the periodontal defect to hinder gingival epithelium and connective tissue cells invasion and promote the proliferation of cells with slow migration rate such as periodontal ligament and bone cells. Generally, the membranes used in GTR are divided into two types: resorbable and non-resorbable. In this review, various GTR membranes based on natural and synthetic polymers are introduced. Natural polymers include polysaccharides and polypeptides and synthetic polymers are usually based on polyesters. Both polymeric membranes have pros and cons. Although natural polymers exhibit appropriate biocompatibility and biodegradability, they usually suffer from inferior mechanical properties. In contrast, membranes based on synthetic polymers have appropriate mechanical strength. However, their biocompatibility is not comparable with natural polymers and their degradation products may lead to foreign body reactions.

کلیدواژه‌ها [English]

  • guided tissue regeneration
  • guided bone regeneration
  • polymeric membranes
  • biodegradable polymer
  • resorbable membrane
1. Hajishengallis G., Periodontitis: from Microbial Immune Subversion to Systemic Inflammation, Nat. Rev. Immunol., 15,
30-44, 2015.
2. Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.M.G., Kowolik M.J., and Janowski GM., Recent Advances
in the Development of GTR/GBR Membranes for Periodontal Regeneration: A Materials Perspective, Dent. Mater., 28, 703-
721, 2012.
3. Hurley L.A., Stinchfield F.E., Bassett C.A.L., and Lyon W.H., The Role of Soft Tissues in Osteogenesis, J. Bone Joint Surg. Am., 41, 1243-1266, 1959.
4. Dorozhkin S.V., Calcium Orthophosphates in Nature, Biology and Medicine, Materials, 2, 399-498, 2009.
5. Liu J. and Kerns D.-G., Mechanisms of Guided Bone Regeneration:A Review, Open. Dent. J., 8, 56-65, 2014.
6. Sheikh Z., Khan A.S., Roohpour N., Glogauer M., and Rehman I., Protein Adsorption Capability on Polyurethane and
Modified-polyurethane Membrane for Periodontal Guided Tissue Regeneration Applications, Mat. Sci. Eng., 68, 267-
275, 2016.
7. Elgali I., Omar O., Dahlin C., and Thomsen P., Guided Bone Regeneration: Materials and Biological Mechanisms Revisited, Eur. J. Oral. Sci., 125, 315-337, 2017.
8. Nair L.S. and Laurencin C.T., Biodegradable Polymers as Biomaterials, Prog. Polym. Sci., 32, 762-798, 2007.
9. Klinger A., Asad R., Shapira L., and Zubery Y., In Vivo Degradation of Collagen Barrier Membranes Exposed to the Oral
Cavity, Clin. Oral Implant Res., 21, 873-876, 2010.
10. Jiménez Garcia J., Berghezan S., Caramês J., Dard M., and Marques D., Effect of Cross-linked vs Non-cross-linked Col
lagen Membranes on Bone: A Systematic Review, J. Periodontal. Res., 52, 955-964, 2017.
11. Schlegel A., Möhler H., Busch F., and Mehl A., Preclinical and Clinical Studies of a Collagen Membrane, Biomaterials,
18, 535-538, 1997.
12. Zubery Y., Goldlust A., Alves A., and Nir E., Ossification of a Novel Cross-linked porcine Collagen Barrier in Guided Bone Regeneration in Gogs, J. Periodontol., 78, 112-121, 2007.
13. Ferreira A.M., Gentile P., Chiono V., and Ciardelli G., Collagen for Bone Tissue Regeneration, Acta. Biomater., 8, 3191-
3200, 2012.
14. Annen B.M., Ramel C.F., Hammerle C.H.F., and Jung R.E., Use of A New Crosslinked Collagen Membrane for the Treatment of Periimplant Dehiscence Defects: A Randomised Controlled Double-blinded Clinical Trial, Eur. J. Oral. Implantol., 4, 87-100, 2011.
15. Shin S.Y., Park H.N., Kim K.H., Lee M.H., Choi Y.S., Park Y.J., Lee Y.M., Ku Y., Rhyu I.C., and Han S.-B., Biological
Evaluation of Chitosan Nanofiber Membrane for Guided Bone Regeneration, J. Periodontol., 76, 1778-1784, 2005.
16. Bavariya A.J., Andrew Norowski P., Mark Anderson K., Adatrow P.C., Garcia-Godoy F., Stein S.H., and Bumgardner
J.D., Evaluation of Biocompatibility and Degradation of Chitosan Nanofiber Membrane Crosslinked with Genipin, J.
Biomed. Mater. Res. Part B, 102, 1084-1092, 2014.
17. Norowski P.A., Fujiwara T., Clem W.C., Adatrow P.C., Eckstein E.C., Haggard W.O., and Bumgardner J.D., Novel Naturally Crosslinked Electrospun Nanofibrous Chitosan Mats for Guided Bone Regeneration Membranes: Material Characterization and Cytocompatibility, J. Tissu. Eng. Regener. Med., 9, 577-583, 2015.
18. Mogoşanu G.D. and Grumezescu A.M., Natural and Synthetic Polymers for Wounds and Burns Dressing, Int. J. Pharm., 463, 127-136, 2014.
19. Jiang T., Carbone E.J., Lo K.-W.-H., and Laurencin C.T., Electrospinning of Polymer Nanofibers for Tissue Regeneration, Prog. Polym. Sci., 46, 1-24, 2015.
20. Noritake K., Kuroda S., Nyan M., Ohya K., Tabata Y., and Kasugai S., Development of a New Barrier Membrane for
Guided Bone Regeneration: An In vitro and In vivo Study, J. Oral. Tissue. Eng., 9, 53-63, 2011.
21. Zhang S., Huang Y., Yang X., Mei F., Ma Q., Chen G., Ryu S., and Deng X., Gelatin Nanofibrous Membrane Fabricated
by Electrospinning of Aqueous Gelatin Solution for Guided Tissue Regeneration, J. Biomed. Mater. Res. A, 90, 671-679,
2009.
22. Vonarx T., Cochran D., Schenk R., and Buser D., Evaluation of a Prototype Trilayer Membrane (PTLM) for Lateral Ridge Augmentation: An Experimental Study in the Canine Mandible,
Int. Oral. Maxillofac. Surg., 31, 190-199, 2002. 
23. Simion M., Misitano U., Gionso L., and Salvato A., Treatment of Dehiscences and Fenestrations Around Dental Implants Using Resorbable and Nonresorbable Membranes Associated with Bone Autografts: A Comparative Clinical Study, Int. J. Oral. Maxillofac. Implant., 12, 1-16, 1997.
24. Lundgren D., Mathisen T., and Gottlow J., The Development of a Bioresorbable Barrier for Guided Tissue Regeneration, Swed. Dent. J., 86, 741-756, 1994.
25. Karfeld-Sulzer L.S., Ghayor C., Siegenthaler B., Gjoksi B., Pohjonen T.H., and Weber F.E., Comparative Study of NMPpreloaded and Dip-loaded Membranes for Guided Bone Regeneration of Rabbit Cranial Defects, J. Tissue. Eng. Regener. M, 11, 425-433, 2017.
26. Zhou H., Lawrence J.G., and Bhaduri S.B., Fabrication Aspects of PLA-CaP/PLGA-CaP Composites for Orthopedic
Applications: A Review, Acta Biomater., 8, 1999-2016, 2012.
27. De Santis R., Russo A., Gloria A., D'Amora U., Russo T., Panseri S., Sandri M., Tampieri A., Marcacci M., and Dediu
V.-A., Towards the Design of 3D Fiber-deposited Poly(ε- caprolactone)/Iron-Doped Hydroxyapatite Nanocomposite
Magnetic Scaffolds for Bone Regeneration, J. Biomed. Nanotechnol., 11, 1236-1246, 2015.
28. Gentile P., Chiono V., Tonda-Turo C., Ferreira A.M., and Ciardelli G., Polymeric Membranes for Guided Bone Regeneration, Biotechnol. J., 6, 1187-1197, 2011.
29. Jung R.E., Hälg G.A., Thoma D.S., and Hämmerle C.H., A Randomized Controlled Clinical Trial to Evaluate A New
Membrane for Guided Bone Regeneration Around Dental Implants, Clin. Oral. Implant. Res., 20, 162-168, 2009.