تهیه فیلم یا غشای متخلخل پلی‌اولفینی با روش کشش

نوع مقاله : تالیفی

نویسندگان

1 پژوهشگاه پلیمر و پتروشیمی ایران

2 عضو هیئت علمی پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

غشا لایه نازکی است که اجزای سیال را به‌طور گزینشی جدا کرده و انتقال جرم بین فازها را کنترل می‌کند. بنابراین، دو وظیفه مهم گزینش‌پذیری و نفوذپذیری بر عهده غشاست. غشاها براساس جنس مواد اولیه به چهار دسته پلیمری، سرامیکی، فلزی و مایع تقسیم می‌شوند. در بین غشاهای رایج، غشای پلیمری به‌دلیل دردسترس بودن با ساختارهای شیمیایی متنوع، خواص فیزیکی بهینه و قیمت کمتر کاربردی‌تر است. غشاهای پلیمری با چهار روش اصلی ریخته‌گری محلول، کشش، استخراج و حک اثر تهیه می‌شوند. در میان این روش‌ها، روش کشش به‌نسبت ارزان‌تر بوده و به‌دلیل استفاده‌نکردن از حلال آثار زیست‌محیطی کمتری دارد. دلیل اصلی اهمیت این روش ساختار دوفازی است که به محض کشش در فصل مشترک تمرکز تنش ایجاد می‌کند و باعث ایجاد حفره می‌شود. از میان پلیمرهای مختلف، پلی‌اولفین‌هایی چون پلی‌پروپیلن و پلی‌اتیلن به‌دلیل قیمت کمتر، نیمه‌بلوری بودن، دارابودن خواص مکانیکی خوب، پایداری شیمیایی و فرایندپذیری آسان برای ساخت غشاهای پلیمری با روش کشش مناسب هستند. غشای متخلخل معمولا در فرایندهای جداسازی مثل جداکننده باتری و کاربردهای داروسازی به‌منظور کنترل سرعت نفوذ اجزای شیمیایی استفاده می‌شود. در این مقاله سعی بر آن است که با مرور منابع و مقالاتی که در این زمینه به‌چاپ رسیده است، اطلاعات قابل استفاده‌ای درباره تهیه غشاهای متخلخل پلیمری با روش کشش ارائه شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Porous Polyolefin Films or Membranes through Stretching Method

نویسندگان [English]

  • fatemeh barzegari 1
  • jalil morshedian 2
  • mohammad razavi-nouri 2
چکیده [English]

Membranes are thin layers that act as selective barriers to separate the components of materials and control the mass transfer between different phases. Therefore, their two main functions include: component selectivity and the permeability characteristics. Membranes according to their material sources are classified into four categories referred as polymeric, ceramic, metal and liquid types. Among these, polymeric membranes are the most favorable materials because of their availability in various chemical structures, their optimum physical properties and lower prices. Polymeric membranes are produced by four main methods known as solution casting, stretching, template leaching and track etching. Among them, stretching technique is inexpensive and because no solvent is used in this process, stretching method has lower environmental impacts. Among different polymers, polyolefines such as polyethylene (PE) and polypropylene (PP), due to their lower price, semi-crystallinity, good mechanical properties, chemical stability and easy process ability, are more appropriate for manufacturing of polymeric membranes by stretching method. Porous membranes are used in applications such as battery separators and drug delivery devices for controlling the permeation rate of chemical components. In this paper, we present some useful information on the above subject by reviewing the related published works in this area.

کلیدواژه‌ها [English]

  • polyethylene
  • Polypropylene
  • stretching method
  • porous membrane
  • annealing
1. Mulder M., Basic Principles of Membrane Technology, Kluwer Academic, The Netherlands, 7–21, 1996.
2. Porter I. and Mark C., Handbook of Industrial Membrane Technology, Noyes, USA, 4-90, 1990.
3. Saljoghi E., Ghafarian V., and Okhovvat A., Manufacturing Technology, Modification and Evaluation of Polymer Membranes,Academic Jihad Publishing Organization ( Persian), 17-64, 2013.
4. Arora P. and Zhang Z., Battery Separators, Chem. Rev., 104, 4419–4462, 2004.
5. Liu F., Hashim N.A., Liu Y., Abed M.M., and Li K., Progress in the Production and Modification of PVDF Membranes, J.
Membr. Sci., 375, 1-27, 2011.
6. Sartowskaa B., Starostaa W., Apelb P., Orelovitchb O., and Blonskayab I., Polymeric Track Etched Membranes-Application for Advanced Porous Structures Formation, Proceedings of the IX International Conference ION, Kazimierz Dolny, Poland,819-821, 25-28 June, 2012.
7. Tabatabaei S.H., Carreau P.J., and Ajji A., Microporous Membranes Obtained from PP/HDPE Multilayer Films by Stretching, J. Membr. Sci., 345, 148-159, 2009.
8. Sadeghi F., Ajji A., and Carreau P.J., Analysis of Microporous Membranes Obtained from Polypropylene Films by Stretching,J. Membr. Sci., 292, 62–71, 2007.
9. Sadeghi F., Ajji A., and Carreau P.J., Study of Polypropylene Morphology Obtained from Blown and Cast Film Processes:
Initial Morphology Requirements for Making Porous Membrane by Stretching, J. Plast. Film. Sheet, 21, 199–216, 2005.
10. Venugopal G., Moore J., Howard J., and Pendalwar S., Characterization of Microporous Separators for Lithium-ion Batteries, J. Power Sources, 77, 34–41, 1999.
11. Tabatabaei S.H., Carreau P.J., and Ajji A., Effect of Processing on the Crystalline Orientation, Morphology, and Mechanical Properties of Polypropylene Cast Films and Microporous Membrane Formation, Polymer, 50, 4228–4240, 2009.
12. Nagō S., Nakamura S., and Mizutani Y., Structure of Microporous Polypropylene Sheets Containing CaCO3 Filler, J. Appl.Polym. Sci., 45, 1527–1535, 1992.
13. Chen C., Lei C., Cai Q., Mo H., and Xu R., Influence of Annealing Time on the Structure and Properties of High-Density
Polyethylene Microporous Membrane, J. Plast. Film Sheeting, 31, 78-95, 2015.
14. Wang S., Saffar A., Ajji A., Wu H., and Guo S.Y., Fabricationof Microporous Membranes from Melt Extruded PolypropylenePrecursor Films via Stretching: Effect of Annealing, Chin.J. Polym. Sci., 33, 1028–1037, 2015.
15. Offord G.T., Armstrong S.R., Freeman B.D., Baer E., Hiltner A., Swinnea J.S., and Paul D.R., Porosity Enhancement in
β-Nucleated Isotactic Polypropylene Stretched Films by Thermal Annealing, Polymer, 54, 2577–2589, 2013.
16. Cai Q., Xu R., Chen X., Chen C., Mo H., and Lei C., Structure and Properties of Melt-Stretching Polypropylene/Silicon Dioxide Compound Microporous Membrane, Polym. Compos., 37, 2684-2691, 2016.
17. Yadegari A., Morshedian J., Khonakdar H.A., and Wagenknecht U., Influence of Annealing on Anisotropic Crystalline
Structure of HDPE Cast Films, Polyolefins J., 3, 1–9, 2016.
18. Saffar A., Ajji A., Carreau P.J., and Kamal M.R., The Impact of New Crystalline Lamellae Formation During Annealing on the Properties of Polypropylene Based Films and Membranes, Polymer, 55, 3156–3167, 2014.
19. Wu S., Lei C., Cai Q., Xu R., Hu B., and Shi W., Study of Structure and Properties of Polypropylene Microporous Membraneby Hot Stretching, Polym. Bull., 71, 2205–2217, 2014.
20. Xanthos M., Chandavasu C., Sirkar K.K., and Gogos C.G., Melt Processed Microporous Films from Compatibilized Immiscible Blends with Potential as Membranes, Polym. Eng. Sci., 42, 810–825, 2002.
21. Mizutani Y., Nakamura S., Kaneko S., and Okamura K., Microporous Polypropylene Sheets, Ind. Eng. Chem. Res., 32,
221–227, 1993.
22. Park J.S., Gwon S.J., Lim Y.M., and Nho Y.C., Influence of the Stretching Temperature on an Alumina Filled Microporous High Density Polyethylene Membrane, Mater. Des., 31, 3215–3219, 2010.
23. Nagō S. and Mizutani Y., Microporous Polypropylene Sheets Containing CaCO3 Filler: Effects of Stretching Ratio and Removing CaCO3 Filler, J. Appl. Polym. Sci., 68, 1543–1553, 1998.
24. Nakamura S., Kaneko S., and Mizutani Y., Microporous Polypropylene Sheets Containing CaCO3 Filler, J. Appl. Polym.
Sci., 49, 143–150, 1993.
25. Nagō S. and Mizutani Y., Microporous Polypropylene Sheets Containing Polymethyl-silsesquioxane Filler, J. Appl. Polym. Sci., 50, 1815–1822, 1993.
26. Nagō S. and Mizutani Y., Preparation of Micr oporous PolypropyleneSheets Containing CaCO3 Filler: Effect of Draft
Ratio, J. Appl. Polym. Sci., 61, 31–35, 1996.