مروری بر تهیه نانوکامپوزیت‌های پلیمری با پلیمرشدن انتقال زنجیر افزایشی- جدایشی برگشت‌پذیر (RAFT)

نوع مقاله : تالیفی

نویسندگان

1 دانشگاه صنعتی شریف، دانشکده شیمی

2 دانشگاه شریف، دانشکده شیمی، آزمایشگاه پلیمر

3 تهران، دانشگاه صنعتی شریف، دانشکده شیمی، آزمایشگاه پلیمر

چکیده

نانوکامپوزیت‌ها ترکیبات تشکیل شده از مخلوط دو یا چند ماده مختلف هستند که به‌صورت فازهای مجزا بوده و دست‌کم یکی از اجزای تشکیل‌دهنده آن‌ها دارای ابعاد نانومتری (معمولا زیر nm 100) است. نانوکامپوزیت‌های پلیمری معمولاً خواص فیزیکی، شیمیایی، مکانیکی و گرمایی بهتری نسبت به کامپوزیت‌های معمولی نشان می‌دهند. پلیمرشدن رادیکالی از پرکاربردترین روش‌های مرسوم تهیه نانوکامپوزیت‌های پلیمری است. به‌علت ارتباط چشمگیر خواص نانوکامپوزیت‌های پلیمری با درجه پلیمرشدن، رفتار پلیمر تولیدشده قابل پیش‌بینی نیست. اخیراً به‌کارگیری روش‌های پلیمرشدن رادیکالی زنده کنترل‌شده به‌منظور تهیه نانوکامپوزیت‌های پلیمری، به‌علت مزایای این روش‌ها، توجه زیادی را جلب کرده است. به‌طور کلی، تا به امروز سه روش اصلی پلیمرشدن رادیکالی زنده کنترل‌شده به‌طور عملی بررسی شده‌اند که عبارت‌اند از: پلیمرشدن رادیکالی با واسطه نیتروکسیدها (NMP)، پلیمرشدن رادیکالی با انتقال اتم (ATRP) و پلیمرشدن انتقال زنجیر افزایشی-جدایشی برگشت‌پذیر (RAFT). از میان پلیمرشدن‌های رادیکالی زنده کنترل‌شده، پلیمرشدن انتقال زنجیر افزایشی-جدایشی برگشت‌پذیر، به‌علت دارابودن برتری‌هایی نسبت به سایر روش‌های استفاده‌شده در تهیه نانوکامپوزیت‌های پلیمری، مورد توجه قرار گرفته است. در این مقاله، به تهیه نانوکامپوزیت‌های پلیمری بر پایه نانوذرات مختلف مانند نانوذرات برپایه کربن، SiO2 ،Fe3O4 و TiO2 از راه پلیمرشدن انتقال زنجیر افزایشی-‌جدایشی برگشت‌پذیر پرداخته شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Brief Review on Polymer-Based Nanocomposites Through RAFT Polymerization

نویسندگان [English]

  • Ali Pourjavadi 1
  • Mohammad Kohestanian 2
  • , Mohammad Amin Abek Azerbaijani 3
1 Polymer Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
2 Polymer Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
3 Polymer Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran
چکیده [English]

Nanocomposites are compounds fabricated by a mixture of two or more different materials in separate phases with at least one of the components in nanoscale dimension (often under 100 nm). Polymeric nanocomposites often demonstrate better physical, chemical, mechanical and thermal properties compared to regular polymeric composites. Radical polymerization is one of the most commonly used processes for the commercial production of polymeric nanocomposites. Since the properties of the polymeric nanocomposites are related to degree of polymerization its behavior is not predictable. Recently, controlled/living radical polymerization techniques have attracted much attention for preparation of polymeric nanocomposites, because of the advantages of these techniques. Generally, to date, three main methods for controlled/living radical polymerization have been practically studied which are as follows: nitroxide-mediated radical polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (RAFT). Because of great advantages of RAFT over other controlled/living radical polymerization techniques (CRP) method, it has been widely used for the synthesis of polymeric nanocomposites. In this article, synthesis of polymeric nanocomposites based on different nanoparticles such as carbon-based nanoparticles, SiO2, Fe3O4, and TiO2 via RAFT polymerization has been reviewed.

کلیدواژه‌ها [English]

  • RAFT polymerization
  • Nanocomposite
  • living polymerization
  • nanoparticle
  • brush polymer
1. Braunecker W.A. and Matyjaszewski K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives,Prog. Polym. Sci., 32, 93-146, 2007.
2. Handbook of RAFT Polymerization, Barner-Kowollik C. (Ed.), Wiley-VCH Verlag, Weinheim, 1-10, 2008.
3. RAFT Polymerization: Adding to the Picture, in Radical Polymerization, Rizzardo E., Chen M., Chong B., Moad G.,
Skidmore M., and Thang S.H., Wiley-VCH Verlag, Weinheim, 104-116, 2007.
4. Tasdelen M.A., Kahveci M.U., and Yagci Y., Telechelic Polymers by Living and Controlled/Living Polymerization Methods,
Prog. Polym. Sci., 36, 455-567, 2011.
5. Hill M.R., Carmean R.N., and Sumerlin B.S., Expanding the Scope of RAFT Polymerization: Recent Advances and New
Horizons., Macromolecules, 48, 5459-5469, 2015.
6. Keddie D.J., Moad G., Rizzardo E., and Thang S.H., RAFT Agent Design and Synthesis, Macromolecules, 45, 5321-5342,
2012.
7. Moad G., Rizzardo E., and Thang S.H., RAFT Polymerization and Some of Its Applications, Chem. Asian J., 8, 1634-1644, 2013.
8. Nanocomposite Materials: Synthesis, Properties and Applications, Parameswaranpillai J., Hameed N., Kurian T., and Yu Y. (Eds.), CRC Press, 2016.
9. Lee W., Patra M., Linse P., and Zauscher S., Scaling Behavior of Nanopatterned Polymer Brushes, Small, 3, 63-66, 2007.
10. Tsujii Y., Ejaz M., Sato K., Goto A., and Fukuda T., Mechanism and Kinetics of RAFT-Mediated Graft Polymerization
of Styrene on a Solid Surface.1. Experimental Evidence of Surface Radical Migration, Macromolecules, 34, 8872-8878,
2001.
11. Moraes J., Ohno K., Maschmeyer T., and Perrier S., Synthesis of Silica–Polymer Core–Shell Panoparticles by Reversible Addition–Fragmentation Chain Transfer Polymerization, Chem. Commun., 49, 9067-9077, 2013.
12. Zhao Y., and Perrier S., Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles
by Z-Supported RAFT Polymerization, Macromolecules, 39, 8603-8608, 2006.
13. Zhao Y. and Perrier S., Reversible Addition-Fragmentation Chain Transfer Graft Polymerization Mediated by Fumed
Silica Supported Chain Transfer Agents, Macromolecules, 40, 9116-9124, 2007.
14. Mittal G., Dhand V., Rhee K.Y., Park S.J., and  Lee, W.R., A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites, Ind. Eng. Chem. Res., 21, 11-25, 2015.
15. Zhao W., Song C., and Pehrsson P.E., Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from
Surface Modification Water-Soluble and Optically pH-Sensitive Single-Walled Carbon Nanotubes from Surface Modification,
J. Am. Chem. Soc., 124, 12418-12419, 2002.
16. Roghani-Mamaqani H. and Khezri K., Polystyrene-Attached Graphene Nanolayers by Reversible Addition-Fragmentation Chain Transfer Polymerization: A Grafting from Epoxy Groups with Various Densities, J. Polym. Res., 23, 190-204,2016.
17. Hong C.Y., You Y.Z., and Pan C., Synthesis of Water-Soluble Multiwalled Carbon Nanotubes with Grafted Temperature-
Responsive Shells by Surface RAFT Polymerization, Chem. Mater., 17, 2247-2254, 2005.
18. Wang G.J., Huang S.Z., Wang Y., Liu L., Qiu J., and Li Y.,Synthesis of Water-Soluble Single-Walled Carbon Nanotubes
by RAFT Polymerization, Polymer, 48, 728-733, 2007.
19. Roghani-Mamaqani H. and Khezri K., A Grafting from Approach to Graft Polystyrene Chains at the Surface of Graphene Nanolayers by RAFT Polymerization: Various Graft Densities from Hydroxyl Groups, Appl. Surf. Sci., 360, 373-382, 2016.
20. Jiang K., Ye C., Zhang P., Wang X., and Zhao Y., One-pot Controlled Synthesis of Homopolymers and Diblock Copolymers Grafted Graphene Oxide Using Couplable RAFT Agents, Macromolecules, 45, 1346-1355, 2012.
21. Liu J., Cui L., Kong N., Barrow C.J., and Yang W., RAFT Controlled Synthesis of Graphene/Polymer Hydrogel with Enhanced Mechanical Property for pH-Controlled Drug Release, Eur. Polym. J., 50, 9-17, 2014.
22. Gu R., Xu W.Z., and Charpentier P.A., Synthesis of Polydopamine- Coated Graphene-Polymer Nanocomposites via RAFT Polymerization, J. Polym. Sci., Part A: Polym. Chem., 51, 3941-3949, 2013.
23. Mohammed L., Gomaa H.G., Ragab D., and Zhu J., Magnetic Nanoparticles for Environmental and Biomedical Applications:A Review, Particuology, 30, 1-14, 2017.
24. Xiao Z.P., Yang K.M., Liang H., and Lu J., Synthesis of Magnetic, Reactive, and Thermoresponsive Fe3O4 Nanoparticlesvia Surface-Initiated RAFT Copolymerization of N-isopropylacrylamide
and Acrolein, J. Polym. Sci., Part A: Polym. Chem., 48, 542-550, 2010.
25. Gonzato C., Courty M., Pasetto P., and Haupt K., Magnetic Molecularly Imprinted Polymer Nanocomposites via Surface- Initiated RAFT Polymerization, Adv. Funct. Mater., 21, 3947- 3953, 2011.
26. Li Y., Dong M., Kong J., Chai Z., and Fu G., Synthesis of Fe3O4@poly(methacrylic acid) Core-Sell Submicrospheres
via RAFT Precipitation Polymerization, J. Colloid Interface Sci., 394, 199-207, 2013.
27. Kuo C., Liu T., Hardiansyah A., Lee C., Wang M., and Chiu W., Self-assembly Behaviors of Thermal- and pH- Sensitive
Magnetic Nanocarriers for Stimuli-Triggered Release., Nanoscale Res. Lett., 9, 250-257, 2014.
28. Ni M., Cheng Y.M., Shi D.J., Li P.Y., and Chen M.Q., Synthesis of Poly(β-Cyclodextrin-Maleic Anhydride) Conjugated
Magnetic Nanoparticles via RAFT Polymerization for Adsorption of Organic Compound, Adv. Mater. Res., 955, 149-
153, 2014.
29. MacWan D.P., Dave P.N., and Chaturvedi S., A Review on Nano-TiO2 Sol-Gel Type Syntheses and its Applications, J.
Mater. Sci., 46, 3669-3686, 2011.
30. Hojjati B., Sui R., and Charpentier P.A., Synthesis of TiO2/ PAA Nanocomposite by RAFT Polymerization, Polymer, 48,
5850-5858, 2007.