مطالعه ساختارهای بلورمایع در پلیمرها و اثر آن‌ها بر خواص نهایی الیاف نساجی

نوع مقاله : تالیفی

نویسنده

دانشگاه سمنان

چکیده

ساختار پلیمرهای نیمه‌بلوری اغلب با مدل سه‌فازی بررسی می‌شود. برخی از زنجیرهای پلیمری بین فازهای بلور و بی‌نظم قرار می‌گیرند که به آن‌ها ساختارهای بلورمایع گفته می‌شود. پلیمرهای بلورمایع اغلب دارای گروه‌های میله‌ای‌شکل تک‌بعدی در زنجیر اصلی یا جانبی هستند. حالت‌های بلورمایع متعددی گزارش شده‌اند که از نظم جهت‌یافته بلنددامنه (فازهای نماتیک و کلستریک) تا نظم جهت‌یافته بلنددامنه جهتی و موقعیتی (فازهای اسمکتیک) طبقه‌بندی می‌شوند. حالت‌های بلورمایع را می‌توان به سه دسته حلالیت‌افزا، گرماگرا و ترکیبات گروه جانبی میان‌زا طبقه‌بندی کرد. با توجه به این نکته که ساختارهای بلورمایع از زنجیرهای پلیمری با نظم پارابلوری تشکیل شده‌اند و این ساختارها نقش کلیدی در خواص نهایی الیاف نساجی ایفا می‌کنند، شناسایی و تغییرات ایجاد شده در آن‌ها بر اثر عملیات بعدی از قبیل کشش و تثبیت گرمایی، دارای اهمیت است. طراحی فرایندهای پلیمری جدید یا بهبود انواع موجود، تنها با شناخت کامل سازوکارهای توسعه ریزساختار و انتقالات میان‌شکلی در الیاف نساجی امکان‌پذیر است که رفـتار بلورمایع نشان می‌دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Liquid-crystalline Structures in Polymers and their Effects on the Properties of Textile Fibers

چکیده [English]

A three-phase model is often used to investigate the structure of semicrystalline polymers. Some of the polymeric chains lay in-between crystalline and amorphous phases so-called liquid-crystal structures. Liquid-crystalline polymers consist mainly of one-dimensional rod-like groups placed in the main chain or side chain. A great number of liquid-crystalline states have been reported, ranging from those exhibiting only long-range orientational order, nematic and cholesteric phases, to those exhibiting both long-range orientational and positional order, the smectic phases. Liquid crystalline structures can be organized into three classes, lyotropic, thermotropic, and mesogenic side group compositions. As the liquid-crystalline structures consist of polymeric chains with para-crystalline order and has a key role on the ultimate properties of textile fibers, it will be important to learn about this structure and the post-treatment changes such as drawing and thermal annealing that occur in this structure. Designing new polymer processes or improving upon old ones can only be achieved by exactly knowing the mechanisms of microstructure development and the mesomorphic transitions in the textile fibers exhibiting liquid-crystalline behaviour.

کلیدواژه‌ها [English]

  • liqiud-crystalline structure
  • high performance fibers
  • mechanical properties
  • glass transition temperature
  • Crystallinity
1.
Gedde Ulf W., Polymer Physics, Chapman and Hall, London, 1st ed., 109-127, 1995.
2.
Kattan M., Dargent E., and Grenet J., Three Phase Model in Drawn Thermoplastic Polyesters: Comparision of Differential Scanning Calorimetry and Thermally Stimulated Depolarisation
Current Experiments, Polymer, 43, 1399-1405, 2002.
3.
Abou-Kandil A.I. and Windle A.H., The Development of Microstructure
in Oriented Poly(ethylene terephthalate) During Annealing, Polymer, 48, 5069-5079, 2007.
4.
Baseri S., Karimi M., and Morshed M., Effect of CO2 on Mesomorphic Structure of Cold-Drawn Poly(ethylene therephthalate)
Fibers by Dynamic Mechanical Analysis, Adv. Polym. Technol., 36, 98-106, 2017.
5.
Sirota E.B., Polymer Crystallization: Metastable Mesophases and Morphology, Macromolecules, 40, 1043-1048, 2007.
6.
Kawakami D., Hsiao B.S., and Burger C., Deformation-Induced Phase Transition and Superstructure Formation in Poly(ethylene terephthalate), Macromolecules, 38, 91-103, 2005.
7.
Ganicz T. and Stańczyk W., Side-chain Liquid Crystal Polymers
(SCLCP): Methods and Materials. An Overview, Materials,
2, 95-128, 2009.
8.
Hwang S.W., Song J.K., Huang X., Cheng H., Kang S.K., Kim B.H., and Kim J.H., High-Performance Biodegradable/Transient
Electronics on Biodegradable Polymers, Adv. Mater., 26, 3905-3911, 2014.
9.
Zhang Z., Wu S., Ren M., and Xiao C., Model of Cold Crystallization
of Uniaxially Oriented Poly(ethylene terephthalate) Fibers, Polymer, 45, 4361-4365, 2004.
10.
Baseri S., Effect of Drawing Temperature on the Structure and Free Volume of Semicrystalline Polyester Yarns, Polym. Eng. Sci., 55, 2030-2041, 2015.
11.
Androsch R. and Wunderlich B., The Link Between Rigid Amorphous Fraction and Crystal Perfection in Cold-Crystallization
Poly(ethylene terephthalate), Polymer, 46, 12556-12566, 2005.
12.
Baseri S., Karimi M., and Morshed M., Study of Microstructure
of Oriented PET Fibres Exposed to Supercritical Carbon Dioxide, Fiber Polym., 15, 161-168, 2014.
13.
Mahendrasingam A., Blundell D.J., Wright A.K., Urban V., Narayanan T., and Fuller W., Observations of Structure Development
During Crystallization of Oriented Poly(ethylene terephthalate), Polymer, 44, 5915-5925, 2003.
14.
Geil P.H., Handbook of Thermoplastic Polyesters, Structure
Development and Mechanical Behavior During Unaxial Drawing of PET, Fakirov S. (Ed.), Wiley-VCH, Weinheim, 209-216, 2002.
15.
Chang S., Zhou X., Xing Z., and Tu T., Probing Polarity of Flame Retardants and Correlating with Interaction Between Flame Retardants and PET Fiber, J. Colloid Interface. Sci., 498, 343–350, 2017.
16.
Dehghan Z. and Modarres A., Evaluating the Fatigue Properties
of Hot Mix Asphalt Reinforced by Recycled PET Fibers
Using 4-Point Bending Test, Constr. Build. Mater., 139, 384–393, 2017.
17.
Ghobashy M.M., Combined Ultrasonic and Gamma-Irradiation
to Prepare TiO2 and PET-g-PAAc Fabric Composite for Self-Cleaning Application, Ultrason. Sonochem., 37, 529–535, 2017.
18.
Mohammadzadeh R., Agheshlouie M., and Mahdavinia G.R.,
Expression of Chitinase Gene in BL21 PET System and Investigating
the Biocatalystic Performance of Chitinase-Loaded AlgSep Nanocomposite Beads, Int. J. Biol. Macromol., 2017, DOI:10.1016/j.ijbiomac.2017.03.119.
19.
Sirelli L., Pereira R.A., Perez C.A., and Dias M.L., Thermal Behavior of Poly(ethylene terephthalate) Crystalline and Amorphous Phases by Wide Angle X-Ray Scattering, J. Macromol.
Sci. B., 45, 343-359, 2006.
20.
Asano T., Calleja F.J.B., Flores A., Tanigaki M., Mina F.M., Sawatari C., Itagaki H., Takahashi H., and Hatta I., Crystallization
of Oriented Amorphous Poly(ethylene terephthalate) As Revealed by X-ray Diffraction and Microhardness, Polymer,
40, 6475-6484, 1999.
21.
Keum J.K., Jeon H.J., Song H.H., Choi J.I., and Son Y.K., Orientation-Induced Crystallization of Poly(ethylene terephthalate)
Fibers with Controlled Microstructure, Polymer, 49, 4882-4888, 2008.
22.
Keum J.K., Kim J., Lee S.M., Song H.H., Son Y.K., Choi J.I., and Im S.S., Crystallization and Transient Mesophase Structure
in Cold-Drawn PET Fibers, Macromolecules, 36, 9873-9878, 2003.
23.
Wunderlich B., Thermal Analysis of Polymeric Materials, Speringer, New York, 161-182, 2005.
24.
Sperling L.H., Introduction to Physical Polymer Science, Wiley
Interscience, New York, 325-347, 2006.
25.
Pavel D., Introduction to Liquid Crystalline Polymers, Structure
and Chemistry, Springer, Switzerland, Vol. 1, 477-499, 2016.
26.
Ran S., Wang Z., Burger C., Chu B., and Hsiao B.S., Mesophase
as the Precursor for Strain-Induced Crystallization in Amorphous Poly(ethylene terephthalate) Film, Macromolecules,
35, 10102-10107, 2002.
27.
Radhakrishnan J. and Kaito A., Structure Formation During
the Isothermal Crystallization of Oriented Amorphous Poly(ethylene terephthalate) Films, Polymer, 42, 3859-3866, 2001.
28.
Lu X.F. and Hay J.N., Crystallization Orientation and Relaxation
in Uniaxially Drawn Poly(ethylene terephthalate), Polymer,
42, 8055-8067, 2001.