2Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran.
چکیده
در سالهای اخیر، کامپوزیتهای پلیمری با نانوذرات سیلسزکیوکسان اولیگومری چندوجهی (POSS) بسیار مطالعه شدهاند. ابعاد نانومتری و نیز امکان وجود گروههای عاملی مختلف در ساختار این نانوذرات باعث شده است تا کامپوزیتهای ساخته شده از آنها، دارای خواص منحصربه فردی باشند که در مواد هیبریدی متداول مشاهده نمیشود. اندازه ذرات POSS در حدود nm 1 تا nm 3 است. این ذرات ساختاری صلب دارند و میتوانند به طور یکنواخت در ماتریس پلیمری پراکنده شوند. در این مقاله، ابتدا ساختارهای مختلف نانوذرات سیلسزکیوکسان اولیگومری چندوجهی معرفی میشوند. سپس، نقش این نانوذرات در بهبود خواص مکانیکی، پایداری گرمایی و دمای انتقال شیشهای کامپوزیتهای پلیمری حاوی آنها بررسی میشود. مقدار نانوذرات به کاربرده شده و نوع گروههای عاملی متصل به آنها بیشترین تاثیر را بر خواص فیزیکی کامپوزیتهای پلیمری دارند. ورود نانوذرات POSS از راه اتصالات عرضی میتواند ساختار کامپوزیت را تحت تاثیر قرار داده و با تقویت آن، خواص مکانیکی را بهبود بخشد. تاثیر نانوذراتی که با اختلاط فیزیکی وارد ساختار ماتریس پلیمری میشوند به برهمکنش مطلوب میان گروههای عاملی موجود روی نانوذرات و ماتریس پلیمری وابسته است. این برهمکنش مطلوب به پراکنش یکنواخت نانوذرات در بستر پلیمری منجر شده و میتواند به بهبود خواص فیزیکی کمک کند. ویژگیهای منحصر به فرد این مواد موجب کاربرد گسترده و متنوع آنها در زمینههایی مانند مهندسی بافت و زیستداروها شده است.
Overview on Polymer-Polyhedral Oligomeric Silsesquioxane (POSS) Composites
نویسندگان [English]
Mansoureh Zarezadeh-Mehrizi1؛ Zahra Kalantari Khoramdareh1؛ Mehdi Nekoomanesh haghighi2؛
چکیده [English]
Polyhedral oligomeric silsesquioxane (POSS) - polymer composite materials have been extensively studied in recent years, as they possess nanoscopic structures and functional properties that are not typically seen in conventional hybrid materials. POSS nanoparticles are 1–3 nm in size, monodisperse and rigid. Incorporation of POSS nanoparticles into both thermoplastic and thermoset polymeric matrices by chemical cross-linking or physical blending methods provides excellent reinforcement. In this review, first, we introduce the various structures of polyhedral oligomeric silsesquioxane and then highlight studies on POSS- polymer nanocomposites with an emphasis on enhancements in mechanical, thermal stability and glass transition. The properties of POSS-containing polymer nanocomposites vigorously depend on the amount of POSS and the state of the POSS dispersion (which depends on the surface functional group of POSS). Incorporation of POSS through chemical cross-linking into polymer can influence its structureand improve mechanical properties by reinforcement.The incorporation of POSS nanoparticles into polymer through physical blending relies on favorable surface interactions between POSS and polymer. POSS having surface functional groups that have favorable surface interactions can disperse uniformly in the polymeric matrix. Uniform dispersion of POSS in polymeric matrices helps to improve physical properties of the nanocomposites. Because of the excellent properties, POSS containing polymer nanocomposites are found in diverse area such as tissue engineering and biomedicines.
1. Camargo P.H.C., Satyanarayana K.G., and Wypych F., Nanocomposites: Synthesis, Structure, Properties and New Application
Opportunities, Mat. Res., 12, 1-39, 2009.
2.Zhongyou H., Yukun X., and Kwon Y., Thermal Stability and Ablation Behavior of Modified Polydimethylsiloxane-Based Polyurethane Composites Reinforced with Polyhedral Oligomeric Silsesquioxane, J. Nanosci. Nanotechnol., 16, 1928-1933, 2016.
3.Kuo S.W. and Chang F.C., POSS Related Polymer Nanocomposites, Prog. Polym. Sci., 36, 1649-1696, 2011.
4. Qi Z., Zhang W., He X., and Yang R., High-efficiency Flame Retardency of Epoxy Resin Composites with Perfect T8 Caged Phosphorus Containing Polyhedral Oligomeric Silsesquioxanes (P-POSSs), Compos. Sci. Technol., 127, 8-19, 2016.
5. Wu J. and Mather P.T., POSS Polymers: Physical Properties and Biomaterials Applications, Polym. Rev., 49, 25-63, 2009.
6. Fu B.X., Lee A., and Haddad T.S., Styrene-Butadiene-Styrene Triblock Copolymers Modified with Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 37, 5211-5218, 2004.
7. Drazkowski D.B., Lee A., and Haddad T.S., Morphology and Phase Transitions in Styrene−Butadiene−Styrene Triblock Copolymer Grafted with Isobutyl-Substituted Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 40, 2798-2805, 2007.
8. Drazkowski D.B., Lee A., Haddad T.S., and Cookson D.J., Chemical Substituent Effects on Morphological Transitions in Styrene−Butadiene−Styrene Triblock Copolymer Grafted with Polyhedral Oligomeric Silsesquioxanes, Macromolecules, 39, 1854-1863, 2006.
9. Haddad T.S. and Lichtenhan J.D., Hybrid Organic−Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules, 29, 7302-7304, 1996.
10. Pyun J., Matyjaszewski K., Wu J., Kim G.M., Chun S.B., and Mather P.T., ABA Triblock Copolymers Containing Polyhedral
Oligomeric Silsesquioxane Pendant Groups: Synthesis and Unique Properties, Polymer, 44, 2739-2750, 2003.
11. Xu H., Yang B., Wang J., Guang S., and Li C., Preparation, Tg Improvement, and Thermal Stability Enhancement Mechanism of Soluble Poly(methyl methacrylate) Nanocomposites by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes, J. Polym. Sci. Polym. Chem., 45, 5308-5317, 2007.
12. Hirai T., Leolukman M., Jin S., Goseki R., Ishida Y., Kakimoto M.A., Hayakawa T., Ree M., and Gopalan P., Hierarchical
Self-Assembled Structures from POSS-Containing Block Copolymers Synthesized by Living Anionic Polymerization, Macromolecules, 42, 8835-8843, 2009.
13. Madbouly S.A. and Otaigbe J.U., Recent Advances in Synthesis, Characterization and Rheological Properties of Polyurethanes and POSS/Polyurethane Nanocomposites Dispersions and Films, Prog. Polym. Sci., 34, 1283-1332, 2009.
14. Wu J., Wu Z.L., Yang H., and Zheng Q., Crosslinking of Low Density Polyethylene with Octavinyl Polyhedral Oligomeric Silsesquioxane as the Crosslinker, RSC Adv., 4, 44030-44038, 2014.
15.Fina A., Tabuani D., and Camino G., Polypropylene–Polysilsesquioxane Blends, Eur. Polym. J., 46, 14-23, 2010.
16. Scapini P., Figueroa C.A., Amorim C.L.G., Machado G., Mauler R.S., Crespo J.S., and Oliveira R.V.B., Thermal and Morphological Properties of High-density Polyethylene/ Ethylene–Vinyl Acetate Copolymer Composites with Polyhedral Oligomeric Silsesquioxane Nanostructure, Polym. Int., 59, 175-180, 2010.
17. Joshi V., Srividhya M., Dubey M., Ghosh A.K., and Saxena A., Effect of Functionalization on Dispersion of POSS-Silicone Rubber Nanocomposites, J. Appl. Polym. Sci., 130, 92-99, 2013.
18. Zhang D., Shi Y., Liu Y., and Huang G., Influences of Polyhedral Oligomeric Silsesquioxanes (POSSs) Containing Different Functional Groups on Crystallization and Melting Behaviors of POSS/Polydimethylsiloxane Rubber Composites, RSC Adv., 4, 41364-41370, 2014.
19. Yang D., Zhang W., Yao R., and Jiang B., Thermal Stability Enhancement Mechanism of Poly(dimethylsiloxane) Composite by Incorporating Octavinyl Polyhedral Oligomeric Silsesquioxanes, Polym. Degrad. Stabil., 98, 109-114, 2013.
20. Wang X., Xuan S., Song L., Yang H., Lu H., and Hu Y., Synergistic Effect of POSS on Mechanical Properties, Flammability, and Thermal Degradation of Intumescent Flame Retardant Polylactide Composites, J. Macromol. Sci., B, 51, 255-268, 2012.
21. Wu X., Sun Y., Xie W., Liu Y., and Song X., Development of Novel Dental Nanocomposites Reinforced with Polyhedral Oligomeric Silsesquioxane (POSS), Dent. Mater., 26, 456-462, 2010.
23. Sánchez-Soto M., Illescas S., Milliman H., Schiraldi D.A., and Arostegui A., Morphology and Thermomechanical Properties of Melt-Mixed Polyoxymethylene/Polyhedral Oligomeric Silsesquioxane Nanocomposites, Macromol. Mater. Eng., 295, 846-858, 2010.
24. Ni Y., Zheng S., and Nie K., Morphology and Thermal Properties of Inorganic–Organic Hybrids Involving Epoxy Resin and Polyhedral Oligomeric Silsesquioxanes, Polymer, 45, 5557-5568, 2004.
25. Zheng L., Farris R.J., and Coughlin E.B., Synthesis of Polyethylene Hybrid Copolymers Containing Polyhedral Oligomeric Silsesquioxane Prepared with Ring-Opening Metathesis Copolymerization, J. Polym. Sci. Polym. Chem., 39, 2920-2928, 2001.
26. Huang J.C., He C.B., Xiao Y., Mya K.Y., Dai J., and Siow Y.P., Polyimide/POSS Nanocomposites: Interfacial Interaction, Thermal Properties and Mechanical Properties, Polymer, 44, 4491-4499, 2003.
27. Wu J., Haddad T.S., and Mather P.T., Vertex Group Effects in Entangled Polystyrene-Polyhedral Oligosilsesquioxane (POSS) Copolymers, Macromolecules, 42, 1142-1152, 2009.
28. Guo Y.-L., Wang W., and Otaigbe J.U., Biocompatibility of Synthetic Poly(ester urethane)/Polyhedral Oligomeric Silsesquioxane Matrices with Embryonic Stem Cell Proliferation and Differentiation, J. Tissue Eng. Regen. Med., 4, 553-564, 2010.
29. Knight P.T., Kirk J.T., Anderson J.M., and Mather P.T., In Vivo Kinetic Degradation Analysis and Biocompatibility of Aliphatic Polyester Polyurethanes, J. Biomed. Mater. Res., 94A, 333-343, 2010.
30. Ghanbari H., Cousins B.G., and Seifalian A.M., A Nanocage for Nanomedicine: Polyhedral Oligomeric Silsesquioxane (POSS), Macromol. Rapid Commun., 32, 1032-1046, 2011.