مروری بر رهایش دارو از نانوالیاف برپایه آمیخته‌ها‌ی پلیمرهای زیست‌تخریب‌پذیر سنتزی

نوع مقاله: تالیفی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی نساجی، دانشگاه یزد

2 عضو هیات علمی دانشکده مهندسی نساجی دانشگاه یزد

3 عضو هیات علمی دانشکده مهندسی شیمی و نفت، مجتمع فنی و مهندسی و معماری، دانشگاه آمریکایی بیروت

چکیده

استعمال دارو با روش‌های معمول (گوارشی و غیرگوارشی)، باعث افزایش غلظت دارو در بدن می‌شود. با کاهش‌ مقدار دارو پس از گذشت چند ساعت، بیمار مجبور می‌شود تا دوباره دارو مصرف کند و این چرخه ادامه می‌یابد. با پیشرفت علم و فناوری در حوزه نانو، سامانه‌های دارورسانی کنترل‌شده جایگزین روش‌های معمول مصرف دارو شده‌اند. این سامانه‌ها بهبود درخور توجهی را در زمینه درمان بیماری‌ها ایجاد کرده‌اند. سامانه‌های مزبور برای رهایش کنترل شده، نیازمند بستر پلیمری زیست‌تخریب‌پذیر و زیست‌سازگار در درون بدن هستند. پلیمرهای ‌زیست‌تخریب‌پذیر به دو دسته کلی طبیعی و سنتزی تقسیم‌بندی می‌شوند که هر یک ویژگی‌های خاص خود را دارند. با توجه به اینکه هر پلیمر دارای معایب و مزایایی است، استفاده از آمیخته پلیمری مهندسی شده برای تولید نانوالیاف با دارورسانی کنترل شده مورد توجه قرار گرفته‌ است. در این مقاله مروری، اثر آمیخته پلیمرهای زیست‌تخریب‌پذیر سنتزی در دارورسانی نانوالیاف بررسی شده است.


کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Drug Delivery of Nanofibers Based on Biodegradable Synthetic Polymer Blends: A Review

نویسنده [English]

  • Mohammad Ali Tavanaie 2
چکیده [English]


Taking a drug/medicine by conventional methods (digestive and indigestive) by patients leads to the release of high dosage of drug in their body. The concentration of drug decreases after a few hours and the patients need to take the next dose again, and such cycle continues. By development of nanoscience and its technology, some new controlled drug delivery systems have been proposed instead. These new systems are expected to improve patients' convenience and compliance, because they are made of biocompatible and biodegradable polymers in controlling drug delivery in the body. Biodegradable polymers can be classified as synthetic and natural polymers with their own specific features. To control the delivery of the drugs, a blend of polymers can be used. In this paper, the effect of blended synthetic biodegradable polymers on controlled drug delivery by electrospun nanofiber is reviewed.

کلیدواژه‌ها [English]

  • nanofibers
  • electrospinning
  • drug delivery
  • synthetic biodegradable polymer
  • polymer blend
1.Huang Z.M., Zhang Y.Z., Kotaki M., and Ramakrishna S., A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites, Compos. Sci. Technol., 15, 2223-2253, 2003.
2. Ziabari M., Mottaghitalab V., and Haghi A.K., Application of Direct Tracking Method for Measuring Electrospun Nanofiber Diameter, Braz. J. Chem. Eng., 1, 53-62, 2009.
3.Ignatova М., Rashkov I., and Manolova N., Drug-loaded Electrospun Materials in Wound-Dressing Applications and in Local Cancer Treatment, Expert Opin. Drug Deliv., 4, 469-483, 2013.
4.Zong X., Kim K., Fang D., Ran S., Hsiao B.S., and Chu B., Structure and Process Relationship of Electrospun Bioabsorbable Nanofiber Membranes, Polymer, 16, 4403-4412, 2002.
5.Son W.K., Youk J.H., Lee T.S., and Park W.H., The Effects of Solution Properties and Polyelectrolyte on Electrospinning of Ultrafine Poly()ethylene oxide)( Fibers, Polymer, 9, 2959-2966, 2004.
6.Lee J.S., Choi K.H., Ghim H.D., Kim S.S., Chun D.H., Kim H.Y., and Lyoo W.S., Role of Molecular Weight of Atactic Poly(vinyl alcohol) (PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning, J. Appl. Polym. Sci., 4, 1638-1646, 2004.
7.Buchko C.J., Chen L.C., Shen Y., and Martin D.C., Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films, Polymer, 26, 7397-7407, 1999.
8.Yuan X., Zhang Y., Dong C., and Sheng J., Morphology of Ultrafine Polysulfone Fibers Prepared by Electrospinning, Polym. Int., 11, 1704-1710, 2004.

9.Mit-uppatham C., Nithitanakul M., and Supapho, P., Ultrafine Electrospun Polyamide-6 Fibers: Effect of SolutionConditionson Morphology and Average Fiber Diameter, Macromol. Chem. Phys., 17, 2327-2338, 2004.

10.Mo X.M., Xu C.Y., Kotaki M., and Ramakrishna S., ElectrospunP ()LLA-CL)( Nanofiber: A Biomimetic Extracellular Matrix
for Smooth Muscle Cell and Endothelial Cell Proliferation,Biomaterials, 10, 1883-1890, 2004.
11.Bognitzki M., Hou H., Ishaque M., Frese T., Hellwig M., Schwarte C., and Greiner A., Polymer, Metal, and Hybrid Nano-
and Meso-tubes by Coating Degradable Polymer Template Fibers (TUFT Process), Adv. Mater., 9, 637-640, 2000.
12.Demir M.M., Yilgor I., Yilgor E.E.A., and Erman B., Electrospinningof Polyurethane Fibers, Polymer, 11, 3303-3309, 2002.
13.Hu X., Liu S., Zhou G., Huang Y., Xie Z., and Jing X., Electrospinningof Polymeric Nanofibers for Drug Delivery Applications,. Control. Release, 185, 12-21, 2014.
14.Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., and Jing X., Biodegradable Electrospun Fibers for Drug Delivery, J. Control. Release, 3, 227-231, 2003.
15.Lee K.H., Kim H.Y., Khil M.S., Ra Y.M., and Lee D.R., Characterizationof Nano-Structured Poly()ε-caprolactone)( NonwovenMats via Electrospinning, Polymer, 4, 1287-1294, 2003.
16.Megelski S., Stephens J.S., Chase D.B., and Rabolt J.F., Micro-and Nano-structured Surface Morphology on Electrospun Polymer Fibers, Macromolecules, 22, 8456-8466, 2002.
17.Kessick R. and Tepper G., Microscale Polymeric Helical Structures Produced by Electrospinning, Appl. Phys. Lett., 23, 4807-4809, 2004.
18.Casper C.L., Stephens J.S., Tassi N.G., Chase D.B., and Rabolt J.F., Controlling Surface Morphology of Electrospun PolystyreneFibers: Effect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules, 2, 573-578, 2004.
19.Cui W., Zhou Y., and Chang J., Electrospun Nanofibrous Materialsfor Tissue Engineering and Drug Delivery, Sci. Technol. Adv. Mater., 10, 1468-6996, 2010.
20.Dua V., Controlled Release of Drugs from Polymeric Devices, Comput. Aided Chem. Eng., 24, 971-976, 2007.
21.Burnham N.L., Polymers for Delivering Peptides and Proteins,Am. J. Health-Syst. Pharm., 2, 210-218, 1994.
22.Gupta P., Vermani K., and Garg S., Hydrogels: From ControlledRelease to pH-responsive Drug Delivery, Drug Discov. Today, 10, 569-579, 2002.
23.Li L., Chen D., Zhang Y., Deng Z., Ren X., Meng X., Tang F., Ren J., and Zhang L., Magnetic and Fluorescent MultifunctionalChitosan Nanoparticles as a Smart Drug Delivery System,Nanotechnology, 40, 405102, 2007.
24.Patri A.K., Majoros I.J., and Baker J.R., Dendritic Polymer Macromolecular Carriers for Drug Delivery, Curr. Opin. Chem. Biol., 4, 466-471, 2002.
25.Drug Delivery and Targeting: for Pharmacists and PharmaceuticalScientists, Hillery A.M., Lloyd A.W., and Swarbrick J. (Eds.), CRC, London, 30-33, 2002.

26.Broaders K.E., Pastine S.J., Grandhe S., and Fréchet J.M., Acid-degradable Solid-walled Microcapsules for pH-responsive Burst-release Drug Delivery, Chem. Commun., 2, 665-667, 2011.
27.Dash S., Murthy P.N., Nath L., and Chowdhury P., Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems, Acta. Poloniae. Pharm., 3, 217-223, 2010.
28.Saltzman W.M., Drug Delivery: Engineering Principles for Drug Therapy, Oxford University, New York, 20-40, 2001.
29.Nguyen T.T.T., Ghosh C., Hwang S.G., Chanunpanich N., and Park J.S., Porous Core/Sheath Composite Nanofibers Fabricatedby Coaxial Electrospinning as a Potential Mat for Drug Release System, Int. J. Pharmaceut., 1, 296-306, 2012.
30.Liechty W.B., Kryscio D.R., Slaughter B.V., and Peppas N.A., Polymers For Drug Delivery Systems, Annu. Rev. Chem. Biomol.,1, 149-173, 2010.
31.Seydim A.C. and Sarikus G., Antimicrobial Activity of Whey Protein Based Edible Films Incorporated with Oregano, Rosemaryand Garlic Essential Oils, Food Res. Int., 5, 639-644, 2006.
32.Zhang Z., Ortiz O., Goyal R., and Kohn J., 13 Biodegradable Polymers. Handbook of Polymer Applications in Medicine and Medical Devices, Elsevier, Kidlington, 303, 2013.
33.Babu N.R., Anitha N., and Rani R.H.K., Recent Trends in BiodegradableProducts from Biopolymers, Advanced Biotech., 9, 30-34, 2010.
34.Balakrishnan K.V., Post harvest Technology and Processing of Turmeric, Turmeric: The Genus Curcuma, CRC, New York, 193-256, 2007.
35.Dhanaraju M.D., Gopinath D., Ahmed M.R., Jayakumar R., and Vamsadhara C., Characterization of Polymeric Poly()ε-

caprolactone)( Injectable Implant Delivery System for the ControlledDelivery of Contraceptive Steroids, J. Biomed. Mater. Res. A., 76, 63-72, 2006.
36.Kumari A., Yadav S.K., and Yadav S.C., Biodegradable PolymericNanoparticles Based Drug Delivery Systems, Colloids Surf. B, 1, 1-18, 2010.
37.Kim T.G., Lee D.S., and Park T.G., Controlled Protein Releasefrom Electrospun Biodegradable Fiber Mesh Composed of Poly()ɛ-caprolactone)( and Poly()ethylene oxide)(, Inter. J. Pharm., 1, 276-283, 2007.
38.Kenawy E.R., Abdel-Hay F.I., El-Newehy M.H., and Wnek G.E., Processing of Polymer Nanofibers Through Electrospinningas Drug Delivery Systems, Mater. Chem. Phys., 1, 296-302, 2009.
39.Suganya S., Senthil Ram T., Lakshmi B.S., and Giridev V.R., Herbal Drug Incorporated Antibacterial Nanofibrous Mat Fabricatedby Electrospinning: An Excellent Matrix for Wound Dressings, J. Appl. Polym. Sci., 5, 2893-2899, 2011.
40.Zahedi P., Rezaeian I., Jafari S.H., and Karami Z., Preparationand Release Properties of Electrospun Poly(vinyl alcohol)(/Poly()ɛ-caprolactone)( Hybrid Nanofibers: Optimization of Process Parameters via D-optimal Design Method, Macromol. Res., 6, 649-659, 2013.
41.Zahedi P., Rezaeian I., and Jafari S.H., In Vitro and in Vivo Evaluations of Phenytoin Sodium-loaded Electrospun PVA, PCL, and Their Hybrid Nanofibrous Mats for Use as Active Wound Dressings, J. Mater. Sci., 8, 3147-3159, 2013.
42.Alhusein N., Blagbrough I.S., and Paul A., Electrospun Matricesfor Localised Controlled Drug Delivery: Release of TetracyclineHydrochloride from Layers of Polycaprolactone and Poly(ethylene-co-vinyl acetate), Drug Deliv. Transl. Res., 6, 477-488, 2012.
43.Motealleh B., Zahedi P., Rezaeian I., Moghimi M., AbdolghaffariA.H., and Zarandi M.A., Morphology, Drug Release, Antibacterial, Cell Proliferation, and Histology Studies of Chamomile-loaded Wound Dressing Mats Based on Electrospun
Nanofibrous Poly()ɛ-caprolactone)(/Polystyrene Blends, J. Biomed. Mater. Res., B, 5, 977-987, 2014.44.Yu H., Jia Y., Yao C., and Lu Y., PCL/PEG Core/Sheath Fibers with Controlled Drug Release Rate Fabricated on the Basis of a Novel Combined Technique, Int. J. Pharm., 1, 17-22, 2014.
45.Fu S.Z., Meng X.H., Fan J., Yang L.L., Wen Q.L., Ye S.J., Lin S., Wang B.Q., Chen L.L., Wu J.B., and Chen Y., cceleration of Dermal Wound Healing by Using Electrospun Curcumin-loaded Poly()ε-caprolactone)(-Poly()ethyleneglycol)(-Poly()ε-caprolactone) Fibrous Mats, J. Biomed. Mater., 3, 533-542, 2014.
46.Vashisth P., Singh R.P., and Pruthi V., A Controlled Release System for Quercetin from Biodegradable Poly(lactide-co-glycolide)(–Polycaprolactone Nanofibers and its in Vitro AntitumorActivity, J. Bioact. Compat. Polym., 3, 1-13, 2015.
47.Gupta B., Revagade N., and Hilborn J., Poly(lactic acid) Fiber:An Overview, Prog. Polym. Sci., 4, 455-482, 2007.
48.Schwach-Abdellaoui K., Monti A., Barr J., Heller J., and Gurny R., Optimization of a Novel Bioerodible Device Based on Auto-catalyzed Poly(ortho esters) for Controlled Delivery of Tetracycline to Periodontal Pocket, Biomaterials, 12, 1659-1666, 2001.
49.Kenawy E.R., Bowlin G.L., Mansfield K., Layman J., SimpsonD.G., Sanders E.H., and Wnek G.E., Release of Tetracycline
Hydrochloride from Electrospun Poly(ethylene-co-vinylacetate),Poly(lactic acid), and a Blend, J. Control. Release, 1, 57-64, 2002.
50.Ren J., Liu W., Zhu J., and Gu S., Preparation and Characterizationof Electrospun, Biodegradable Membranes, J. Appl. Polym. Sci., 5, 3390-3397, 2008.
51.Savva I., Odysseos A.D., Evaggelou L., Marinica O., Vasile E., Vekas L., Sarigiannis Y., and Krasia-Christoforou T., abrication,Characterization, and Evaluation in Drug Release Properties of Magnetoactive Poly(ethylene oxide)–Poly(L-lactide) electrospun Membranes, Biomacromolecules, 12, 4436-4446, 2013.
52.Aboutalebi Anaraki N., Roshanfekr Rad L., Irani M., and Haririan I., Fabrication of PLA/PEG/MWCNT Electrospun Nanofibrous Scaffolds for Anticancer Drug Delivery, J. Appl. Polym. Sci., 3, DOI: 10.1002/app.41286, 2015.
53.Zhang H., Niu Q., Wang N., Nie J., and Ma G., Thermo-sensitiveDrug Controlled Release PLA Core/PNIPAM Shell Fibers Fabricated Using a Combination of Electrospinning and UV Photo-polymerization, Eur. Polym. J., 71, 440-450, 2015.
54.Zahedi P., Karami Z., Rezaeian I., Jafari S.H., Mahdaviani P., Abdolghaffari A.H., and Abdollahi M., Preparation and PerformanceEvaluation of Tetracycline Hydrochloride Loaded Wound Dressing Mats Based on Electrospun Nanofibrous Poly()lactic acid)(/Poly()ε-caprolactone)( Blends, J. Appl. Polym. Sci., 5, 4174-4183, 2012.

55.Karami Z., Rezaeian I., Zahedi P., and Abdollahi M., Preparationand Performance Evaluations of Electrospun Poly()ε-caprolactone), Poly(lactic acid), and Their Hybrid (50/50) Nanofibrous Mats Containing Thymol as an Herbal Drug for ffective Wound Healing, J. Appl. Polym. Sci., 2, 756-766, 2013.
56.Gupta K.K., Pal N., Mishra P.K., Srivastava P., Mohanty S., and Maiti P., 5-Florouracil-loaded Poly(lactic acid)-poly(caprolactone) Hybrid Scaffold: Potential ChemotherapeuticImplant, J. Biomed. Mater. Res., B., 8, 2600-2612, 2014.
57.Haroosh H.J. and Dong Y., Electrospun Nanofibrous Compositesto Control Drug Release and Interaction Between Hydrophilic Drug and Hydrophobic Blended Polymer Matrix International Conference on Composite Materials, Montreal, 28 July, 2013.
58.Valarezo E., Tammaro L., Malagón O., González S., ArmijosC., and Vittoria V., Fabrication and Characterization of Poly()lactic acid)(/Poly()ε-caprolactone)( Blend Electrospun FibersLoaded with Amoxicillin for Tunable Delivering, J. Nanosci.Nanotechnol., 15, 4706-4712, 2015.
59.Haroosh H.J. and Dong Y., Biodegradable Polyesters, Fakirov S. (Ed.), 1st ed., Chap. 8, Wiley-VCH, Germany 191-213, 2015.
60.Hong Y., Fujimoto K., Hashizume R., Guan J., Stankus J.J., Tobita K., and Wagner W.R., Generating Elastic, BiodegradablePolyurethane/Poly(lactide-co-glycolide) Fibrous Sheets with Controlled Antibiotic Release via Two-stream Electrospinning,Biomacromolecules, 4, 1200-1207, 2008.
61.Jannesari M., Varshosaz J., Morshed M., and Zamani M., Composite Poly(vinyl alcohol)/Poly(vinyl acetate) Electrospun
Nanofibrous Mats as a Novel Wound Dressing Matrix for Controlled Release of Drugs, Int. J. Nanomed., 6, 993-1003, 2011.
62.Liu X., Lin T., Gao Y., Xu Z., Huang C., Yao G., Jiang L., Tang Y., and Wang X., Antimicrobial Electrospun Nanofibers of Cellulose Acetate and Polyester Urethane Composite for Wound Dressing, J. Biomed. Mat. Res., B, 6, 1556-1565, 2012.
63.Jiang Y.N., Mo H.Y., and Yu D.G., Electrospun Drug-loaded Core–sheath PVP/Zein Nanofibers for Biphasic Drug Release, Int. J. Pharm., 1, 232-239, 2012.
64.Yu D.G., Wang X., Li X.Y., Chian W., Li Y., and Liao Y.Z., Electrospun Biphasic Drug Release Polyvinylpyrrolidone/Ethyl Cellulose Core/Sheath Nanofibers, Acta Biomater., 3, 5665-5672, 2013.
65.Sohrabi A., Shaibani P.M., Etayash H., Kaur K., and ThundatT., Sustained Drug Release and Antibacterial Activity of Ampicillin Incorporated Poly(methyl methacrylate)–nylon 6 Core/Shell Nanofibers, Polymer, 11, 2699-2705, 2013.
66.Fernandes J.G., Correia D.M., Botelho G., Padrão J., Dourado F., Ribeiro C., Lanceros-Méndez S., and Sencadas V., PHB-PEO Electrospun Fiber Membranes Containing Chlorhexidine for Drug Delivery Applications, Polym. Test., 34, 64-71, 2014.
67.Zhu T., Chen S., Li W., Lou J., and Wang J., Flurbiprofen Axetil Loaded Coaxial Electrospun Poly(vinyl pyrrolidone)–nanopoly(lactic-co-glycolic acid) Core–Shell Composite Nanofibers: Preparation, Characterization, and Anti-adhesion Activity, J. Appl. Polym. Sci., 2015, DOI: 10.1002/app.41982.