مروری کوتاه بر روش‌های تهیه داربست‌های متخلخل سه‌بعدی از راه الکتروریسی-قسمت دوم: روش‌های شیمیایی

نوع مقاله: تالیفی

نویسندگان

1 دانشگاه گیلان

2 عضو هیئت علمی دانشکده نساجی دانشگاه گیلان

چکیده

داربست از اجزای اصلی مهندسی بافت است که نقش عمده آن، آماده‌سازی محیطی مناسب برای تعیین شکل بافت است. در حقیقت، داربست قابلیت پشتیبانی از چسبندگی و تکثیر سلول را دارد.در مهندسی بافت، ساختارهای نانوالیافی سه‌بعدی، به‌دلیل شباهت به بافت‌های بدن انسان ترجیح داده می‌شوند. داربست‌های متخلخل سه‌بعدی به‌عنوان قالب ساختاری در تولید بافت به‌کار می‌روند، ردیف‌های علامت‌دهی را برای سلول‌ها فراهم می‌کنند و انتقال اکسیژن و عوامل درمانی را آسان می‌سازند. تولید داربست سه‌بعدی با کمک فرایندهای معمولی امکان‌پذیر نیست. بنابراین، سلول‌های کشت شده تنها می‌توانند به‌شکل مسطح رشد کنند. روش‌های مختلفی برای بهبود ضخامت داربست، در تولید داربست‌های متخلخل سه‌بعدی پیشنهاد شده است. در مقاله پیش رو، خلاصه‌ای از روش‌های شیمیایی تولید داربست‌های متخلخل سه‌بعدی، از جمله حلال‌شویی ذرات، جدایی فاز و اسفنج‌شدن گازی ارائه می‌شود. در ادامه، روش‌های تولید داربست‌های سه‌بعدی با روش الکتروریسی، به‌ویژه محلول الکتروریسی مرور می‌شود. افزون بر این، نقش عوامل مختلف، مانند چگالی بار و رطوبت در داربست‌های الکتروریسی شده نیز بررسی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Brief Review on Fabrication Methods of Three-dimensinal Porous Scaffolds by Electrospinning-Part II: Chemical Methods

نویسنده [English]

  • zahra pedramrad 1
چکیده [English]

One of the major components of tissue engineering is the scaffold. The main role of the scaffold is to provide a suitable environment that defines the shape of the tissue. In fact, scaffold can support cell adhesion and proliferation. In tissue engineering, three-dimensional (3D) nanofibrous structures are preferred owing to their structural similarity to human body tissues. 3D porous scaffolds serve not only as structural molds for tissue production but also provide signaling cues to cells and facilitate oxygen and therapeutic agent delivery. The fabrication of 3D scaffolds cannot be achieved using conventional processes, so cultured cells could only develop into flat shapes. Therefore, to improve the thickness of scaffolds, several approaches have been suggested to fabricate 3D porous scaffolds. This article summarizes chemical methods of producing 3D porous scaffolds including particulate leaching, phase separation and gas foaming. This review will cover the production methods of 3D scaffolds using electrospinning by focusing on solution electrospinning. Furthermore, the role of various factors like charge density and humidity in electrospun scaffolds is discussed.

کلیدواژه‌ها [English]

  • 3D scaffolds
  • electrospinning
  • particulate leaching
  • phase separation
  • gas foaming
1. Sundaramurthi D., Krishnan U.M., and Sethuraman S., Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering,
Polym. Rev., 54, 348-376, 2014.
2. Suganya S., Venugopal J., Agnes Mary S., Ramakrishna S., Lakshmi B.S., and Giri Dev V.R., Aloe Vera Incorporated Biomimetic Nanofibrous Scaffold: A Regenerative Approach for Skin Tissue Engineering, Iran. Polym. J., 23, 237-248, 2014.
3. Bhardwaj N., Sow W.T., Devi D., Ng K.W., Mandal B.B., and Cho N.J., Silk Fibroin-Keratin Based 3D Scaffolds as A Dermal Substitute for Skin Tissue Engineering, Integr. Biol., 7, 53-63, 2015.
4. Shahini A., Yazdimamaghani M., Walker K.J., Eastman M.A., Hatami-Marbini H., Smith B.J., Ricci J.L., Madihally S.V.,
Vashaee D., and Tayebi L., 3D Conductive Nanocomposite Scaffold for Bone Tissue Engineering, Int. J. Nanomed., 9,
167–181, 2014.
5. Liu J., Nie H., Xu Z., Guo F., Guo S., Yin J., Wang Y., and Zhang C., Construction of PRP-Containing Nanofibrous Scaffolds for Controlled Release and Their Application to Cartilage Regeneration, J. Mater. Chem. B, 3, 581-591, 2015.
6. Li W.J., Tuli R., Okafor C., Derfoul A., Danielson K.G., Hall  D.J., and Tuan R.S., A Three-Dimensional Nanofibrous Scaffold for Cartilage Tissue Engineering Using Human Mesenchymal Stem Cells, Biomaterials, 26, 599–609, 2005.
7. Deepthi S., Jeevitha K., Nivedhitha Sundaram M., Chennazhi K.P., and Jayakumar R., Chitosan–Hyaluronic Acid Hydrogel Coated Poly(caprolactone) Multiscale Bilayer Scaffold for Ligament Regeneration, Chem. Eng. J., 260, 478–485, 2015.
8. Bishi D.K., Guhathakurta S., Venugopal J.R., Cherian K.M., and Ramakrishna S., Low Frequency Magnetic Force Augments Hepatic Differentiation of Mesenchymal Stem Cells on A Biomagnetic Nanofibrous Scaffold, J. Mater. Sci., Mater.
Med., 25, 2579-2589, 2014.
9. Kucinska-Lipka J., Gubanska I., Janik H., and Sienkiewicz M., Fabrication of Polyurethane and Polyurethane Based
Composite Fibres by The Electrospinning Technique for Soft Tissue Engineering of Cardiovascular System, Mater. Sci.
Eng., C., 46, 166–176, 2015.

10. Weightman A., Jenkins S., Pickard M., Chari D., and Yang Y., Alignment of Multiple Glial Cell Populations in 3D Nanofiber Scaffolds: Toward the Development of Multicellular Implantable Scaffolds for Repair of Neural Injury, Nanomedicine, 10, 291–295, 2014.
11. Zhu W., Masood F., O'Brien J., and Zhang L.G., Highly Aligned Nanocomposite Scaffolds by Electrospinning and
Electrospraying for Neural Tissue Regeneration, Nanomedicine, 11, 693-704, 2015.
12. Liu H., Ding X., Zhou G., Li P., Wei X., and Fan Y., Electrospinning of Nanofibers for Tissue Engineering Applications, J.
Nanomater., 2013, 1-12, 2013. 
13. Ravichandran R.K., Sundaramurthi D., Gandhi S., Sethuraman S., and Krishnan U.M., Bioinspired Hybrid Mesoporous

Silica–Gelatin Sandwich Construct for Bone Tissue Engineering, Microporous Mesoporous Mater., 187, 53–62, 2014.
14. Holzwarth J.M. and Ma P.X., 3D Nanofibrous Scaffolds for Tissue Engineering, J. Mater. Chem., 21, 10243-10251, 2011.
15. Jeong S.I., Burns N.A., Bonino C.A., Kwon I.K., Khan S.A., and Alsberg E., Improved Cell Infiltration of Highly Porous
3D Nanofibrous Scaffolds Formed by Combined Fiber–Fiber Charge Repulsions and Ultra-Sonication, J. Mater. Chem. B,
2, 8116-8122, 2014.
16. Ng R., Zang R., Yang K.K., Liu N., and Yang S.T., Three-Dimensional Fibrous Scaffolds with Microstructures and Nanotextures for Tissue Engineering, RSC Adv., 2, 10110-10124, 2012.
17. Xu H., Cai S., Xu L., and Yang Y., Water-Stable Three-Dimensional Ultrafine Fibrous Scaffolds from Keratin for Cartilage Tissue Engineering, Langmuir, 30, 8461−8470, 2014.
18. Cai S., Xu H., Jiang Q., and Yang Y., Novel 3D Electrospun Scaffolds with Fibers Oriented Randomly and Evenly in Three Dimensions to Closely Mimic the Unique Architectures of Extracellular Matrices in Soft Tissues: Fabrication and Mechanism Study, Langmuir, 29, 2311–2318, 2013.
19. Mendonça R.H., de Oliveira Meiga T., da Costa M.F., and da Silva Moreira Thiré R.M., Production of 3D Scaffolds Applied to Tissue Engineering Using Chitosan Swelling as a Porogenic Agent, J. Appl. Polym. Sci., 129, 614-625, 2013.
20. Subia B., Kundu J., and Kundu S., Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications, Intech Open Access, India, 141-158, 2010.
21. Patel H., Bonde M., and Srinivasan G., Biodegradable Polymer Scaffold for Tissue Engineering, Trends Biomater. Artif.
Organs, 25, 20-29, 2011.
22. Mano J., Silva G., Azevedo H.S., Malafaya P., Sousa R., Silva S.S., Boesel L.F., Oliveira J.M., Santos T.C., Marques A.P., Neves N.M., and Reis R.L., Natural Origin Biodegradable Systems in Tissue Engineering and Regenerative Medicine:
Present Status and Some Moving Trends, J. Royal Soc. Interface, 4, 999-1030, 2007.
23. Chung H.J. and Park T.G., Surface Engineered and Drug Releasing Pre-Fabricated Scaffolds for Tissue Engineering, Adv. Drug Delivery Rev., 59, 249-262, 2007.
24. Bartis D. and Pongrácz J., Three Dimensional Tissue Cultures and Tissue Engineering, University of Pécs, Hungary, 1-53, 2011.
25. Pan Z., Qu Z.h., Zhang Z., Peng R., and Yan C., Particle-Collision and Porogen-Leaching Technique to Fabricate Polymeric Porous Scaffolds with Microscale Roughness of Interior Surfaces, Chin. J. Polym. Sci., 31, 737-747, 2013.
26. Modaress M.P., Mirzadeh H., and Zandi M., Fabrication of a Porous Wall and Higher Interconnectivity Scaffold Comprising  Gelatin/Chitosan via Combination of Salt-Leaching and Lyophilization Methods, Iran. Polym. J., 21, 191-200, 2012.
27. Lebourg M., Serra R.S., Estellés J.M., Sánchez F.H., Ribelles J.G., and Antón J.S., Biodegradable Polycaprolactone Scaffold with Controlled Porosity Obtained by Modified Particle- Leaching Technique, J. Mater. Sci., Mater. Med., 19, 2047-
2053, 2008.
28. Cannillo V., Chiellini F., Fabbri P., and Sola A., Production of Bioglass® 45S5–Polycaprolactone Composite Scaffolds via
Salt-Leaching, Compos. Struct., 92, 1823-1832, 2010. 
29. Budyanto L., Goh Y., and Ooi C., Fabrication of Porous Poly(L-lactide) (PLLA) Scaffolds for Tissue Engineering Using
Liquid–Liquid Phase Separation and Freeze Extraction, J. Mater. Sci., Mater. Med., 20, 105-111, 2009.
30. Zhang H., Liu X., Yang M., and Zhu L., Silk Fibroin/Sodium Alginate Composite Nano-Fibrous Scaffold Prepared Through Thermally Induced Phase-Separation (TIPS) Method for Biomedical Applications, Mater. Sci. Eng., C, 55, 8-13, 2015.
31. Chen J.S., Tu S.L., and Tsay R.Y., A Morphological Study of Porous Polylactide Scaffolds Prepared by Thermally Induced Phase Separation, J. Taiwan Inst. Chem. Eng., 41, 229-238, 2010.
32. Ma P.X. and Elisseeff J., Scaffolding in Tissue Engineering, CRC, New York, 3-638, 2005. 33. Dziadek M., Pawlik J., Menaszek E., Stodolak-Zych E., and Cholewa-Kowalska K., Effect of the Preparation Methods on Architecture, Crystallinity, Hydrolytic Degradation, Bioactivity, and Biocompatibility of PCL/Bioglass Composite Scaffolds, J. Biomed. Mater. Res. Part B, 103, 1580–1593, 2014.
34. Mi H.Y., Jing X., Yu E., McNulty J., Peng X.F., and Turng L.S., Fabrication of Triple-Layered Vascular Scaffolds by
Combining Electrospinning, Braiding, and Thermally Induced Phase Separation, Mater. Lett., 161, 305-308, 2015.
35. Chen H., Truckenmuller R., Van Blitterswijk C., and Moroni L., Fabrication of Nanofibrous Scaffolds for Tissue Engineering Applications, Woodhead, Netherlands, 158-183, 2013.
36. Liu S., He Z., Xu G., and Xiao X., Fabrication of Polycap rolactone Nanofibrous Scaffolds by Facile Phase Separation

Approach, Mater. Sci. Eng., C, 44, 201-208, 2014.
37. Mooney D.J., Baldwin D.F., Suh N.P., Vacanti J.P., and Langer R., Novel Approach to Fabricate Porous Sponges of Poly(D,Llactic- co-glycolic acid) without the Use of Organic Solvents, Biomaterials, 17, 1417-1422, 1996.
38. Zellander A., Gemeinhart R., Djalilian A., Makhsous M., Sun S., and Cho M., Designing a Gas Foamed Scaffold for Keratoprosthesis, Mater. Sci. Eng., C, 33, 3396-3403, 2013.
39. Stampella A., Rizzitelli G., Donati F., Mazzarino M., de la Torre X., Botrè F., Giardi M.F., Dentini M., Barbetta A., and
Massimi M., Human Hepatoma Cell Lines on Gas Foaming Templated Alginate Scaffolds for In Vitro Drug-Drug Interaction
and Metabolism Studies, Toxicol. In Vitro, 30, 331-340, 2015.
40. Petrie Aronin C.E., Cooper J.A. (Jr.), Sefcik L.S., Tholpady S.S., Ogle R.C., and Botchwey E.A., Osteogenic Differentiation of Dura Mater Stem Cells Cultured In Vitro on Three- Dimensional Porous Scaffolds of Poly(ε-caprolactone) Fabricated via Co-extrusion and Gas Foaming, Acta Biomater., 4, 1187-1197, 2008.
41. Di Maio E., Salerno A., and Iannace S., Scaffolds with Tubular/ Isotropic Bi-modal Pore Structures by Gas Foaming and
Fiber Templating, Mater. Lett., 93, 157-160, 2013.
42. Ji C., Annabi N., Hosseinkhani M., Sivaloganathan S., and Dehghani F., Fabrication of Poly-D,L-Lactide/Polyethylene
Glycol Scaffolds Using the Gas Foaming Technique, Acta Biomater., 8, 570-578, 2012.
43. Rouholamin D., Smith P.J., and Ghassemieh E., Control of Morphological Properties of Porous Biodegradable Scaffolds
Processed by Supercritical CO2 Foaming, J. Mater. Sci., 48, 3254-3263, 2013.
44. Bonino C.A., Efimenko K., Jeong S.I., Krebs M.D., Alsberg E., and Khan S.A., Three-Dimensional Electrospun Alginate
Nanofiber Mats via Tailored Charge Repulsions, Small, 8, 1928-1936, 2012.
45. Kriegel C., Kit K.M., McClements D.J., and Weiss J., Electrospinning of Chitosan–Poly (Ethylene Oxide) Blend Nanofibers in The Presence of Micellar Surfactant Solutions, Polymer, 50, 189–200, 2009.
46. Xu H., Cai S., Sellers A., and Yang Y., Electrospun Ultrafine Fibrous Wheat Glutenin Scaffolds with Three-Dimensionally
Random Organization and Water Stability for Soft Tissue Engineering, J. Biotechnol., 184, 179-186, 2014.
47. Ahirwal D., Hébraud A., Kádár R., Wilhelm M., and Schlatter G., From Self-assembly of Electrospun Nanofibers to 3D cm Thick Hierarchical Foams, Soft Matter., 9, 3164–3172, 2013.
48. Sun B., Long Y.Z., Yu F., Li M.M., Zhang H.D., Li W.J., and Xu T.X., Self-assembly of a Three-Dimensional Fibrous Polymer Sponge by Electrospinning, Nanoscale, 4, 2134-2137, 2012.