مروری بر کامپوزیت‌های بر پایه هیدروژل

نوع مقاله: تالیفی

نویسنده

فارغ التحصیل کارشناسی ارشد صنعتی شریف کارشناس ارشد فرایند شرکت تلاشگران صنعت و دانش

چکیده

هیدروژل‌ها، شبکه‌های پلیمری اشباع از آب هستند که به‌دلیل تنوع ساختار در زمینه‏‌های گوناگون مانند مصارف پزشکی، داروسازی، جداسازی مولکول‌های زیستی یا سلول‌ها و زیست‌حسگرها استفاده می‌شوند. در سال‌های اخیر، به‌دلیل داشتن ساختار پایدار و انعطاف‌پذیر در پدیده‌های انتقال، به هیدروژل‌ها توجه بسیار شده است. هیدروژل‌های پاسخگو به تغییر عوامل محیطی، مانند دما، فشار، pH و میدان الکتریکی جایگزین نوینی برای سامانه‌های کنترل در سامانه‌های میکروسیالی محسوب می‌شوند. با ظهور کامپوزیت‌های بر پایه هیدروژل، بستری نوین برای بهبود پدیده انتقال فراهم شد. در نتیجه، این کامپوزیت‌ها با هدف بهبود فرایندهای انتقال جرم با استفاده از ایجاد محیط کلوییدی در هیدروژل‌ها به‌کار برده شده‌اند. این سامانه‌ها به‌دلیل ویژگی‌های منحصربه‌فرد، در کاربردهای بسیاری مانند مهندسی بافت استفاده می‌شوند. ژل‌های پرشده امولسیون به‌عنوان گونه جدیدی از کامپوزیت‌های بر پایه هیدروژل، پلیمرهای اشباع از آبی هستند که با پراکندن قطره‌ها در فاز آلی به‌وجود می‌آیند. این دسته جدید از مواد، کاربردهای بسیاری در دارورسانی و صنایع غذایی به‌دست آورده‌اند و خواص آن‌ها به‌منظور یافتن سایر کاربردهای نوین دردست مطالعه است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrogel-based Composites: A Review

نویسنده [English]

  • Abolfazl Maghsoodnia
چکیده [English]

Hydrogels are water-saturated polymeric networks with many different structures which areused in different applications such as: biomedical, pharmacy and biosensors and separation of biomolecules and cells. In recent years, hydrogels, because of their stable and flexible structure, have received attention in mass transfer technology. Temperature-, pressure-, pH- and electric field-responsive hydrogels are novel control systems in microfluidic applications. The transport phenomena have been greatly improved by this emerging new hydrogel-based composite technology. In this respect, this composite is used to enhance mass transport in hydrogels by forming a colloidal environment, which is useful in an application such as tissue engineering. As a new type of hydrogel-based composite, emulsion-filled gels are water-saturated polymers doped with oil droplets. These materials have major advantages in drug delivery systems and food science applications.The characteristics of these new gels are being studied in order to discover their new applications extended to other physic-chemical fields.

کلیدواژه‌ها [English]

  • Hydrogel
  • transport phenomena
  • hydrogel-based composite
  • emulsion-filled gel
  • responsive hydrogel
1. Osada Y., Gong J.P., and Tanaka. Y., Polymer Gel, J. Macromol. Sci., Polym. Rev., 44, 87-112, 2004.
2. Matos M.A. and White L.R., Electroosmotically Enhanced Mass Transfer through Polyacrylamide Gel, J. Colloid Interface
Sci., 300, 429-436, 2006.
3. Matos M.A. and White L.R., Enhanced Mixing in Polyacrylamide Gels Containing Embedded Silica Nanoparticles as Internal Electroosmotic Pumps, Colloids Surf. B, 61, 262-269, 2008.
4. Mohammadi A., Electric-field-induced Response of a Droplet Embedded in a Polyelectrolyte Gel, Phys. Fluids, 25, 1243-
1265, 2013.
5. Komarova G.A. and Starodustev G., Intelligent Gels and Cryogels with Embedded Emulsions of Various Oils, J. Appl.
Polym. Sci., 127, 2703-2709, 2012.
6. Sala G., van Vilet T., and Stuart M.A.C., Deformation and Fracture of Emulsion-filled Gels: Effect of Oil Content and
Deformation Speed, Food Hydrocolloids, 23, 1381-1393, 2009.
7. Shingel K.I., Roberge C., and Zabeida O., Solid Emulsion Gel as a Novel Construct for Topical Applications: Synthesis,
Morphology and Mechanical Properties, J. Mater. Sci., 20, 681-689, 2009.
8. Mohammadi A., Transport in Droplet-hydrogel Composites: Response to an External Stimuli, Colloid Polym. Sci., 293,
941-962, 2014.
9. Sala G., van Aken G.A., Cohen M.A.C., and van de Velde F., Effect of Droplet-matrix Interactions on Large Deformation
Properties of Emulsion-filled Gels, J. Texture Stud., 38, 511- 535, 2007.
10. Mohammadi A., Electrokinetic Mixing and Displacement of Charged Droplets in Hydrogels, Transp. Porous Media, 104,
469-499, 2014.
11. Shapiro J.M. and Oyen M.L., Hydrogel Composite Materials for Tissue Engineering Scaffold, J. Minerals, 65, 505-516,
2013.
12. Pal K., Banthia A.K., and Majumdar D.K., Polymeric Hydrogels: Characterization and Biomedical Applications – A Mini
Review, Des. Monomers Polym., 12, 197-220, 2009.
13. Lowman A.M. and Dziubla T.D., Structural and Dynamic Response of Neutral and Intelligent Networks in Biomedical Environment, Adv. Chem. Eng., 29, 75-130, 2004.
14. Qiu Y. and Park K., Environment-sensitive Hydrogels for Ddrug Delivery, Adv. Drug Delivery Rev., 53, 321-339, 2001.
15. Kim D. and Beebe D.J., Hydrogel-based Reconfigurable Components for Microfluidic Devices, Lab Chip, 7, 193-198, 2007.
16. Eddington D.T. and Beebe D.J., Flow Control with Hydrogels, Adv. Drug Delivery Rev., 56, 199-210, 2004.
17. Bassetti M.J. and Chatterjee A.N., Development and Modeling of Electrically Triggered Hydrogels for Microfluidic Applications, J. Microelectromech., 14, 1198-1207, 2005.
18. Beebe D.J., Moore J.S., and Bauer J.M., Functional Hydrogel Structures for Autonomous Flow Control Inside Microfluidic
Channels, Nature, 404, 588-590, 2000.
19. Hill J.R., Electric-field-enhanced Transport in Polyacrylamide Hydrogel Nano-composites, J. Colloid Interface Sci., 316,635-644, 2007.

20. Sershen S., Westcott S.L., Halas N.J., and West J.L., Temperature-  sensitive Polymer-Nanoshell Composites for Photothermally Modulated Drug Delivery, J. Biomed. Mater. Res., 51, 293-298, 2000.
21. Mao L., Roos Y.H., and Miao S., Study on the Rheological Properties and Volatile Release of Cold-Set Emulsion-Filled
Protein Gels, J. Agric. Food Chem., 62, 11420−11428, 2014.
22. Chen J. and Dickinson E., Effect of Surface Character of Filler  Particles on Rheology of Heat-set Whey Protein Emulsion
Gels, Colloids surf., 12, 373–381, 1999.
23. McClements M.D.J., Effect of Emulsion Droplets on Rheology of Whey Protein Isolate Gels, J. Texture Stud., 24, 411–422, 1993.
24. Langley K.R. and Green M.L., Compression Strength and Fracture Properties of Model Particulate Food Composites in
Relation to Their Microstructure and Particle–matrix Interaction, J. Texture Stud., 20, 191–207, 1989.
25. Chojnicka A., Sala G., Kruif C.G., and Velde van de, The Interactions between Oil Droplets and Gel Matrix Affect the
Lubrication Properties of Sheared Emulsion Filled Gels, Food Hydrocolloids, 23, 1038-1046, 2009.
26. Vliet T.V., Rheological Properties of Filled Gels; Influence of Filler Matrix Interaction, Colloid Polym. Sci., 266, 518-524,
1988.
27. Sala G., van de Velde F., Stuart M.A.C., and van Aken G.A., Oil Droplet Release from Emulsion-filled Gels in Relation to
Sensory Perception, Food Hydrocolloids, 21, 977–985, 2007.