مروری کوتاه بر بهبود خواص ‌ضدباکتری و ‌مقاومت کاغذ با استفاده از کامپوزیت کربوکسی‌متیل ‌سلولوز-کیتوسان

نوع مقاله : تالیفی

نویسندگان

1 آموزش و پرورش

2 دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

در سال‌های اخیر، استفاده از پلیمرها به‌عنوان مواد جدید، به‌دلیل مزایای آن‌ها نسبت به سایر مواد، افزایش درخور توجهی یافته است. به‌کاربردن پلیمرها روشی موفق برای تقویت خواص مقاومت شبکه‌های الیاف سلولوزی است. ساخت پلیمرهای جدید به کمک فناوری نانوشیمیایی، مانند مواد بسته‌بندی، راه حل مبتکرانه‌ای برای افزایش عملکرد پلیمرها و سطح سلامت است. همچنین، مزایای اقتصادی و زیست‌محیطی افزون‌تر، مانند کاهش انرژی مصرفی برای تولید و انتقال و نگه‌داری، افزایش زیست‌تخریب‌‌پذیری و کاهش حجم مواد دورریختنی را به‌همراه دارد. کیتوسان به‌دلیل فراوانی و مقرون به‌صرفه‌بودن در بسیاری از زمینه‌ها کاربرد یافته است. این ماده افزودنی در صنعت کاغذ به‌عنوان افزایش‌دهنده مقاومت در حالت خشک و عامل ضدمیکروب استفاده می‌شود. جذب سطحی کربوکسی‌متیل ‌سلولوز (CMC) روی الیاف کاغذ، باعث کاهش مقاومت آن می‌شود. بنابراین، کاربرد پلیمر کاتیونی کیتوسان همراه با کربوکسی‌متیل ‌سلولوز نتایج درخور توجهی را در بهبود مقاومت شبکه الیاف نشان داده است. هدف از این مقاله، مرور سازوکار ضدباکتری کربوکسی‌متیل ‌سلولوز-کیتوسان و عملکرد عوامل ضدباکتری این نانوساختار است. افزون بر این، ویژگی‌های مقاومتی کاغذهای بسته‌بندی و بهداشتی که تا کنون کمتر به آن‌ها توجه شده است، نیز بررسی می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Brief Review on Improvement in Antibacterial and Strength Properties of Paper Using Carboxymethyl Cellulose/Chitosan Composite

نویسنده [English]

  • Habib Allah Sahragard.D 1
1
2
چکیده [English]

In recent years, the use of polymers as new materials compared to traditional substances has been significantly grown due to their numerous advantages. Utilization of polymers is a successful method for increasing resistance characteristics of cellulose fibers networks. Preparation of new polymers with the help of novel nanochemical technology as packaging materials is an innovative solution for increasing performance and obtaining healthy, economic, and environmental friendly materials with outstanding advantages such as saving energy consumption, increasing biodegradation capacity, and reducing waste materials. Chitosan has been used in many fields for being abundant and economical. Chitosan is used in paper industry as antimicrobial agent and additive to increase resistance in dry state. Adsorption of carboxymethyl cellulose on the surface of paper fiber reduces the resistance of paper fibers, therefore, the use of chitosan as a cationic polymer together with carboxymethyl cellulose results in an improvement in the resistance of fiber network significantly. In recent years a few researchers have focused of this subject, which is to examine the antibacterial mechanism of carboxymethyl cellulose/chitosan composite and its antibacterial performance and resistive characteristics in packaging and sanitary papers.

کلیدواژه‌ها [English]

  • Packaging
  • antibacterial activity
  • paper
  • carboxymethyl cellulose
  • Chitosan
 
1. Liu K., Lin X.X., Chen L.H., Huang L.L., Cao S.L., and Wang H., Preparation of Microfibrillated Cellulose/Chitosan–Benzalkonium Chloride Biocomposite for Enhancing Antibacterium and Strength of Sodium Alginate Films, J. Agric. Food
Chem., 61, 6562–6567, 2002.
2. Andresen M., Johansson L.S., Tanem B.S., and Stenius P., Properties and Characterization of Hydrophobized Microfibrillated
Cellulose, Cellulose, 13, 665–667, 2006.
3. Sondi I. and Salopek-Sondi B., Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for
Gram-negative Bacteria, J. Colloid Interface Sci., 275, 177–182, 2004.
4. Girase B., Depan D., Shah J.S., Xu W., and Misra R.D.K., Silver–Clay Nanohybrid Structure for Effective and Diffusion-
Controlled Antimicrobial Activity, Mater. Sci. Eng., C, 31,1759-1766, 2011.
5. Martins N.C.T., Freire C.S.R., Pinto R.J.B., Fernandes S.C.M.,Neto C.P., Silvestre A.J.D., Causio J., Baldi G., Sadocco P.,
and Trindade T., Electrostatic Assembly of Ag Nanoparticlesonto Nanofibrillated Cellulose for Antibacterial Paper Products,
Cellulose, 19, 1425-1436, 2012.
6. Imani R., Talaiepour M., Dutta J., Ghobadinezhad M.R., HemmasiA.H., and Nazhad M.M., Production of Antibacterial Filter
Paper From Wood Cellulose, Bioresour. Technol., 6, 891-900, 2011.
7. Sun S.L., An Q.Z., Li X., Qian L.Y., He B.H., and Xiao H.N.,Synergistic Effects of Chitosan-Guanidine Complexes on EnhancingAntimicrobial Activity and Wet-Strength of Paper,Bioresour. Technol., 101, 5693–5700, 2010.
8. Qian L.Y., Guan Y., He B.H., and Xiao H.N., Synergy of WetStrength and Antimicrobial Activity of Cellulose Paper Induced
by a Novel Polymer Complex, Mater. Lett., 62, 3610–3612, 2008.
9. Zhang D. and Xiao H.N., Dual-Functional Beeswaxes onEnhancing Antimicrobial Activity and Water Vapor Barrier
Property of Paper, ACS Appl. Mater. Interfaces, 5, 3464–3468,2013.
10. Fatehi P., Qian L.Y., Kititerakun R., Rirksomboon T., and XiaoH.N., Complex Formation of Modified Chitosan and CarboxymethylCellulose and its Effect on Paper Properties, Tappi J.,8, 29–35, 2009.
11. Habiballah S.D. and Elyas A., Application of Silver–ChitosanNanocomposites and Antibacterial Characteristics of Paper
and Its Effects on Paper Strengths, 2nd Iranian Student ChemistryConference University of Guilan, Rasht, Iran, 6-8 Oct.2015.
12. Kaushik A., Singh M., and Verma G., Green NanocompositesBased on Thermoplastic Starch and Steam Exploded Cellulose
Nanofibrils from Wheat Straw, Carbohydr. Polym., 82,337–345, 2010.
13. Tatari A. and Shekarian E., Importance of Cellulose Derivativesin Producting of Biodegradable Films for Food Packaging,
Iran. J. Packag. (Persian), 5, 22-31, 2014.
14. Lackinger E., Schmid L., Sartori J., Isogai A., Potthast A., andRosenau T., Novel Paper Sizing Agents from Renewables. Part
1: Preparation of a Paper Sizing Agent Derived from NaturalPlant Oils, Holzforschung, 65, 3–11, 2011.
15. Lackinger E., Schmid L., Sartori J., Isogai A., Potthast A., andRosenau T., Novel Paper Sizing Agents from Renewables.
Part 2: Characterization of Maleated High Oleic SunflowerOil (MSOHO), Holzforschung, 65, 13–19, 2011.
16. Lackinger E., Isogai A., Schmid L., Sartori J., Potthast A., andRosenau T., Novel Paper Sizing Agents from Renewables.
Part 3: Emulsion Stability and Hydrolysis Behavior Comparedto Conventional Sizes, Holzforschung, 65, 21-27, 2011.
17. Fernandez Kim S.O., Physicochemical and Functional Propertiesof Crawfish Chitosan as Affected by Different Processing
Protocols, M.Sc. Thesis, Louisiana State University, 2004.
18. Rani M., Agarwal A., and Negi Y.S., Review: Chitosan Based Hydrogel Polymeric Beads - As Drug Delivery System, Bioresource,5, 2765-2807, 2010.
19. Blomstedt M., Modification of Cellulosic Fibers by CarboxymethylCellulose (CMC), Effects on Fiber and Sheet Properties,
Ph.D. Thesis, Helsinki University of Technology, Laboratoryof Forest Products Chemistry, 2007.
20. Smook G., Pulp and Paper Technologists, Translated by MirshokraiA., 2nd ed., ??, Tehran, 2001.
21. Marais A., Utsel S., Gustafsson E., and Wågberg L., Towards a Super-strainable Paper Using the Layer-by-Layer Technique,
Carbohydr. Polym., 100, 218–224, 2014.
22. Kannan P., Los M., Los J.M., and Jonsson J.N., T7 BacteriophageInduced Changes of Gold Nanoparticle Morphology:
Biopolymer Capped Gold Nanoparticles as Versatile Probesfor Sensitive Plasmonic Biosensors, Analyst, 139, 3563–3571,2014.
23. Kumar A.P. and Singh R.P., Biocomposites of Cellulose ReinforcedStarch: Improvement of Properties by Photo-Induced
Crosslinking, Bioresour. Technol., 99, 8803–8809, 2008.
24. De Azeredo H.M.C., Antimicrobial Nanostructures in FoodPackaging, Trends Food Sci. Technol., 30, 56-69, 2013.
25. Wu T. and Farnood R., Cellulose Fibre Networks Reinforcedwith Carboxymethyl Cellulose/Chitosan Complex Layer-by-Layer, Carbohydr. Polym., 114, 500–505, 2014.
26. Heydari S., Ghasemian A., and Afra E., Effect of Carboxymethyl Cellulose, Cationic Surfactant and Alum on Strength
Properties of Liner Paper Made from Old Corrugated Container (OCC), World Sci. J., 3, 180-188, 2013.
27. Ondaral S., Kurtuluş O., and Usta M., Effect of Fiber Modificationwith Carboxymethyl Cellulose on the Efficiency of
a Microparticle Flocculation System, Chem. Pap., 65, 16-22,2011.
28. Chen Z., Li C., Song Z., and Qian X., Modification of Precipitated Calcium Carbonate Filler for Papermaking with Adsorptionof Cationically Derivatized Chitosan and Carboxymethyl Chitosan, Bioresource, 9, 5917-5927, 2014.
29. Taghinezhad Kafshgari E., Hashemi J., and Tabatabaei R.,The Effect of Surface Coating of Chitosan and Ortho-Phenyl
phenol on the Life of Orange, Iran. J. Innovation Food Sci.Technol. (Persian), 5, 71-78, 2014.
30. Qi L., Xu Z., Jiang X., Hu C., and Zou X., Preparation andAntibacterial Activity of Chitosan Nanoparticles, Carbohydr.
Polym., 339, 2693-2700, 2004.
31. Tareq A., Alam M., Reza S., Sarwar T., Fardous Z., ChowdhuryA.Z., and Hossain S., Comparative Study of Antibacterial
Activity of Chitin and Chemically Treated Chitosan Prepared from Shrimp (Macrobrachium Rosenbergii) Shell Waste, J.
Virol. Microbiol., 2013, 1-9, 2013.
32. Du W., Niu S.S., Xu Y.L., Xu R.Z., and Fan C.L., AntibacterialActivity of Chitosan Tripolyphosphate Nanoparticles Loaded
with Varipus Metals., Carbohydr. Polym., 75, 385-389, 2008.
33. Mubarak Ali D., Thajuddin N., Jeganathan K., and GunasekaranM., Plant Extract Mediated Synthesis of Silver and Gold
Nanoparticles and its Antibacterial Activity Against ClinicallyIsolated Pathogens., Colloids Surf., B, 85, 360-365, 2011.
34. Chung Y.C., Su Y.P., Chen C.C., Jia G., Wang H.I., Wu J.C.G.,and Lin J., Relationship Between Antibacterial Acitivity of
Chitosan and Surface Characteristics of Cell Wall, Acta Pharmacol.Sin., 25, 932-936, 2004.
35. Xu Y., Qiu C., and Zhang W., Crosslinking Chitosan into H3PO4/HNO3–NANO2 Oxidized Cellulose Fabrics as Antibacterial-
finished Material, Carbohydr. Polym., 112, 186-194,2014.
36. Jana S., Designing of Chitosan-based Scaffolds for BiomedicalApplications, Ph.D. Thesis, University of Washingtion,2012.
37. Mohamed R.R. and Sabaa M.W., Synthesis and Characterizationof Antimicrobial Cross Linked Carboxymethyl Chitosan
Nanoparticles Loaded with Silver, Int. J. Biol. Macromol., 69,95-99, 2014.
38. Möller H., Grelier S., Pardon P., and Coma V., Antimicrobialand Physicochemical Properties of Chitosan-HPMC-Based
Films, J. Agric. Food Chem., 52, 6585–6591, 2004.
39. Feng Q.L., Wu J., Chen G.Q., Cui F.Z., Kim T.N., and KimJ.O., A Mechanistic Study of the Antibacterial Effect of Silver
Ions on Escherichia Coli and Staphylococcus Aureus, J.Biomed. Mater. Res., 52, 662–668, 2000.