کاتالیزور‌های فلزات واسطه ابتدایی و انتهایی جدول تناوبی برای پلیمرشدن اولفین‌ها

نوع مقاله: تالیفی

نویسنده

پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

پیشرفت علمی و فنی در زمینه کاتالیزورها به‌منظور پلیمرشدن اولفین‌ها، نمونه کاملی از موفقیت کاربرد شیمی آلی‌فلزی در کاتالیزورهای همگن بود. کاتالیزورهای واسطه ابتدایی و انتهایی جدول تناوبی دسته جدیدی از کاتالیزورهای پلیمرشدن کوئوردینانسی هستند که در اوایل سال 1998 کشف شدند. کاتالیزورهای فلزات واسطه انتهایی بر پایه فلزات واسطه پس از گروه 4 شامل آهن، نیکل و کبالت قرار دارند. در همان سال‌ها Fujita و همکاران در شرکت Mitsui، کاتالیزورهای فلزات واسطه ابتدایی را برای پلیمرشدن اولفین‌ها کشف کردند که بر پایه لیگاند فنوکسی-ایمین قرار داشتند. نقطه ضعف عمده سامانه‌های کاتالیزورهای فلزات واسطه انتهایی، سرعت زیاد واکنش‌های انتقال زنجیر در مقایسه با کاتالیزور‌های زیگلر ناتا و متالوسن است. بدین سبب، گاهی این کاتالیزورها اولیگومر‌ تولید می‌کنند. از طرفی، با به‌کاربردن این کاتالیزورها، امکان انجام نوعی واکنش ایزومرشدن با نام قدم‌زدن زنجیر وجود دارد. از کاربرد‌های جالب کاتالیزورهای فلزات واسطه ابتدایی و انتهایی امکان‌پذیر ساختن استفاده از مونومر‌های قطبی در پلیمرشدن اولفین‌ها با کمک آن‌هاست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Early and Late Transition Metal Catalysts for Olefin Polymerization

چکیده [English]

Recent scientific developments on catalysts used in olefin polymerizations can be regarded as a good sign of successful applications of organometallic chemistry in homogenous polymerization. Early and late transition metal catalysts (LTM) are a new groups of coordination polymerizations catalysts which were discovered in 1998. The LTM catalysts are based on late metals of group IV of transition metal including Fe, Ni, Co, and etc. At the same time, another category of early transition metal catalysts based on phenoxy ligand was discovered by Fujita and his colleagues in Mitsui for olefin polymerization. The major disadvantage of this type of catalytic systems is their higher rate of chain transfer reactions when compared with Ziegler-Natta and metallocene catalysts; therefore these catalysts may produce oligomers. However, due to a special isomerization reaction, called chain walking, these catalysts have some interesting features for application in polymer technology. One of the interesting properties of LTM catalysts is their ability of using polar monomer in olefin polymerization.

کلیدواژه‌ها [English]

  • catalyst
  • early and late transition metal
  • diimine ligand
  • phenoxy-imine ligand
  • oxygen phosphorus chelate
 

1. Kricheldorf H., Nuyleen O., Swift G., Dekker M., Handbook of Polymer Synthesis 2, Kaminsky W. (Ed.), Marcel Dekker,

New York, 1-72, 2005.

2. Hoff R.E. and Mathers R.T., Handbook of Transition MetalPolymerization Catalysts, John Wiley and Sons, Hoboken,

New Jersey, 1-28, 2010.

3. Giambastiani G. and Campora J., Olefin Upgrading Catalysisby Nitrogen-Based Metal Complexes II, Springer, Netherlands,

36, 1-63, 2011.

4. Guan Z., Recent Progress of Catalytic Polymerization forControlling Polymer Topology, Chem. Asian. J., 5, 1058–1070, 2010.

5. Rieger B., Baugh L.S., Kacker S., and Striegler S., Late TransitionMetal Polymerization Catalysis, Wiley-VCH Verlag,

1-26, Germany, 2013.

6. Johnson L.K., Killian C.M., and Brookhart M., New Pd (II)-and Ni (II)-Based Catalysts for Polymerization of Ethylene

and Alpha-olefins, J. Am. Chem. Soc., 117, 6414-6415, 1995.

7. Johnson L.K., Mecking S., and Brookhart M., Copolymerizationof Ethylene and Propylene with Functionalized Vinyl

Monomers by Palladium (II) Catalysts, J. Am. Chem. Soc.,118, 267-268, 1996.

8. Small B.L. and Brookhart M., Polymerization of Propyleneby a New Generation of Iron Catalysts: Mechanisms of Chain

Initiation, Propagation and Termination, Macromolecules, 32,2120-2130, 1999.

9. Britovsek G.J.P., Gibson V.C., Kimberley B.S., Maddox P.J., McTavish S.J., Solan G.A., White A.J.P., and Williams

D.J., Novel Olefin Polymerization Catalysts Based on Ironand Cobalt, Chem. Commun., 849-850, 1998, DOI: 10.1039/

A8019331.

10. Matsui S., Mitani M., Saito J., Matsukawa N., Tanaka H.,Nakano T., and Fujita T., Post Metallocenes: Catalytic Perfomance

of New Bis(salicylaldiminato) Zirconium Complexes for Ethylene Polymerization, Chem. Lett., 29, 554-555, 2000.

11. Matsui S., Mitani M., Saito J., Tohi Y., Makio H., MatsukawaN., Takagi Y., Tsuru K., Nitabaru M., Nakano T., Tanaka H.,

Kashiwa N., and Fujita T., A Family of Zirconium Complexes Having Two Phenoxy−Imine Chelate Ligands for Olefin polymerization,J. Am. Chem. Soc., 123, 6847-6856, 2001.

12. Suzuki Y., Terao H., and Fujita T., Recent Advances in Phenoxy-Based Catalysts for Olefin Polymerization, Bull. Chem.

Soc. Jpn., 76, 1493–1517, 2003.

13. Mitani M., FI Catalysts: New Olefin Polymerization Catalystsfor the Creation of Value Added Polymers, Chem. Rec., 4,

137-158, 2004.

14. Damavandi S., Ahmadjo S., Sandaroos R., and Zohuri G.H.,FI Catalyst for Polymerization of Olefin, Polymerization, De

Souza Gomes, A., (Ed.), In Tech, Croatia, 117-144, 2012.

15. Kinoshita S., Kawamura K., and Fujita, T., Early TransitionMetal Catalysts with Phenoxy-Imine Type Ligands for the

Oligomerization of Ethylene, Chem. Asian J., 6, 284–290,2011.

16. Takeuchi D., Transition Metal Catalyzed Polymerization ofPolar Allyl and Diallyl Monomers, MRS. Bull., 38, 252-259,

2013.

17. Ittel S.D., Johnson L.K., and Brookhart M., Late-Metal Catalystsfor Ethylene Homo- and Copolymerization, Chem. Rev.,

100, 1169-1203, 2001.

18. Allen K., Campos J., Daugulis O., and Brookhart M., LivingPolymerization of Ethylene and Copolymerization of Ethylene

Methyl Acrylate Using "Sandwich" Diimine PalladiumCatalysts, ASC Catal., 5, 456–464, 2015.

19. Killian C.M., Tempel D.J., Johnston L.K., and Brookhart M.,Living Polymerization of α-Olefins Using Ni (II) α-Diimine

Catalysts, Synthesis of New Block Polymers Based onα-Olefins, J. Am. Chem. Soc., 118, 11664-11665, 1996.

20. Johnston L.K., Killian C.M., Arthur S.D., Feldman J., McCordE.F., Mclain S.J., Kreutzer K.A., Bennett M.A., Coughlin

E.B., Ittel S.D., Parthasarathy A., Tempel D.J., and BrookhartM., α-Olefins and Olefin Polymers and Process Therefore, WO

Patent 9,623,010, 1996.

21. Galland G.B. and Souza R., 13C NMR Determination of theComposition of Linear Low-Density Polyethylene Obtained

with [η3-methallyl-nickel-diimine] PF6 Complex, Macromolecules,32, 1620-1625, 1999.

22. Xu L. and Ye A., A Pd–Diimine Catalytic Inimer for Synthesisof Polyethylenes of Hyperbranched on Hyperbranched and

Star architectures, Chem. Commun., 49, 8800-8802, 2013.

23. Giuseppe L.G., Mauri M., Bertini F., Canetti M., Piovani D.,and Ricci G., Ni(II) α-Diimine-Catalyzed α-Olefins Polymerization:Thermoplastic Elastomers of Block Copolymers,Macromolecules, 48, 1304-1312, 2015.

24. Hlatky G.G., Heterogeneous Single-Site Catalysts for OlefinPolymerization, Chem. Rev., 100, 1347-1376, 2000.

25. Anguoa X., Shibiaoa Z., Qingquanb L., Yongbinga Z., YoumingaS., Xiangyanga Z., Chengganga Z., Xianga D., Feia H.,

and Songqinga H., Synthesis of A Novel Branched–HyperbranchedDiblock Polyolefin via Chain Walking and Chain

Transfer Polymerization from Ethylene Alone, Des. MonomerPolym., 18, 112-117, 2015.

26. Britovsek G.J.P., Bruce M., Gibson V.C., Kimberley B.S.,Maddox P.J., Mastroianni S., McTavish S.J., Redshaw C., Solan

G.A., Strömberg S., White A.J.P., and Williams D.J., HeterogeneousSingle-Site Catalysts for Olefin Polymerization, J.

Am. Chem. Soc., 121, 8728-8740, 1999.

27. Britovsek G.J.P. and Mastroianni S., Oligomerisation ofEthylene by Bis(imino)Pyridyl Iron and Cobalt Complexes,Chem. Eur. J., 6, 2221-2231, 2000.

28. Furlan L.G., Early and Post Transition Metal Complexes as aSingle of Combined Components in the Ethylene and Isoprene

Polymerization, PhD Thesis, University Federal Rio GrandeDu Sul, 2005.

29. Gibson V.C. and Spitzmesser S.K., Advances in Non-metalloceneOlefin Polymerization Catalysis, Chem. Rev., 103, 283-

316,  2003.

30. Zohuri G.H. and Ahmadjo S., Polyolefin Book (Persian), IranPolymer Institute, 137-179, 2011.

31. Dai S., Sui X., and Chen C., Highly Robust Palladium(II)α-Diimine Catalysts for Slow Chain Walking Polymerizationof Ethylene and Copolymerization with Methyl Acrylate, Angew.Chem. Int. Ed., 54, 1–7, 2015.

32. Held A., Bauers F.M., and Mecking S., Coordination Polymerizationof Ethylene in Water with Pd (II) and Ni (II) Catalysts,

Chem. Commun., 301-302, 2000, DOI: 10.1039/A908633A.

33. Soula R., Novat C., Tomov A., Spitz R., Claverie J., Drujon X., Malinge J., and Saudemont T., Catalytic Polymerization

of Ethylene in Eemulsion, Macromolecules, 34, 2022-2026,2001.

34. Wang C.M., Friedrich S.K., Younkin, T.R., Li R.T., GrubbsR.H., Bansleben D.A., and Day M.W., Neutral Nickel(II)-

Based Catalysts for Ethylene Polymerization, Organometallics,17, 3149-3151, 1998.

35. Younkin T.R, Connor E.F., Henderson J.I., Friedrich S.K.,Grubbs R.H., and Bansleben D.A., Neutral, Single-Component

Nickel (II) Polyolefin Catalysts That Tolerate Heteroatoms,Science, 287, 460-462, 2000.

36. Bauers F.M. and Mecking S., Aqueous Homo- and Copolymerizationof Ethylene by Neutral Nickel(II) Complexes,

Macromolecules, 34, 1165-1171, 2001.

37. Novak B.M., Tian G., Nodono M., and Boyle P., 223rd ACSNational Meeting, Washington DC, USA, 26 Mar. 2002.

38. Hicks F.A. and Brookhart M., A Highly Active Anilinotropone-Based Neutral Nickel(II) Catalyst for Ethylene Polymerization,Organometallics, 20, 3217-3219, 2001.

39. Fujita T., Tohi Y., Mitani M., Matsui S., Saito J., NitabaruM., Sugi K., Makio H., and Tsutsui T., (Mitsui Chemicals,

Inc.), Olefin Polymerization Catalysts, Transition Metal Compounds,Processes for Olefin Polymerization, and Alpha-Olefin/

Conjugated Diene Copolymers, EP 0874005, 1998.

40. Matsui S., Tohi Y., Mitani M., Saito J., Makio H., TanakaH., Nitabaru M., Nakano T., and Fujita T., New Bis(salicylaldiminato) Titanium Complexes for Ethylene Polymerization,Chem. Lett., 28, 1065-1066, 1999.

41. Matsui S., Mitani M., Saito J., Tohi Y., Makio H., Tanaka H.,and Fujita T., Post-Metallocenes: a New Bis(salicylaldiminato)

Zirconium Complex for Ethylene Polymerization, Chem.Lett., 28, 1263-1264, 1999.

42. Matsukawa N., Matsui S., Mitani M., Saito J., Tsuru K.,Kashiwa N., and Fujita T., Ethylene Polymerization Activity

Under Practical Conditions Displayed by Zirconium ComplexesHaving Two Phenoxy-Imine Chelate Ligands, J. Mol.

Catal. A: Chem., 169, 99-104, 2001.

43. Saito J., Mitani M., Matsui S., Kashiwa N., and Fujita T.,Polymerization of 1-Hexene with Bis[N-(3-tert-butylsalicylidene)

Phenylaminato] Titanium(IV) Dichloride Using iBu3Al/Ph3CB(C6F5)4 as a Cocatalyst, Macromol. Rapid Commun., 21,1333-1336, 2000.

44. Makio H. and Fujita T., Development and Application of FICatalysts for Olefin Polymerization: Unique Catalysis and Distinctive Polymer Formation, Acc. Chem. Res., 42, 1532-1544, 2009.

45. Matsugi T. and Fujita T., High-Performance Olefin PolymerizationCatalysts Discovered on the Basis of a New Catalyst

Design Concept, Chem. Soc. Rev., 37, 1264-1277, 2008.

46. Axenov K.V., Klinga M., Lehtonen O., Koskela H.T., LeskelaM., and Repo T., Hafnium Bis(phenoxyimino) Dibenzyl Complexesand Their Activation Toward Olefin Polymerization,Organometallics, 26, 1444-1460, 2007.