اصلاح چقرمگی رزین‌های اپوکسی با استفاده از پلی‌یورتان‌ها: مطالعه‌ مروری

نوع مقاله : تالیفی

نویسندگان

پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

پلیمرهای گرماسخت به‌دلیل برخورداری از پیوندهای عرضی در ساختار شیمیایی، ویژگی‌های بسیار مطلوبی، مانند استحکام مکانیکی زیاد، پایداری ابعادی بسیار مناسب در دماهای زیاد، خزش اندک و مقاومت مناسب در برابر حلال‌ها نشان می‌دهند. به‌منظور دستیابی به ویژگی‌های گرمامکانیکی مطلوب، لازم است درصد بیشتری از پیوندهای عرضی در رزین ایجاد شود. رزین اپوکسی از رزین‌های پرمصرفی است که به‌دلیل داشتن خواص مکانیکی و ویژگی‌های برجسته، در کاربردهای زیادی مانند پوشش‌ها، چسب‌ها و کامپوزیت‌ها استفاده می‌شود. اما، این رزین‌ها پس از پخت کاهش مقاومت ضربه‌ای و رشد ترک نشان می‌دهند. بدین سبب در سال‌های اخیر، پژوهش‌های فراوانی به‌منظور بهبود چقرمگی رزین اپوکسی انجام یافته است. اصلاح شیمیایی رزین‌های اپوکسی با پلی‌یورتان‌ها از مهم‌ترین روش‌های بهبود چقرمگی محسوب می‌شود. از جمله خواص منحصربه‌فرد پلی‌یورتان‌ها می‌توان به ویژگی‌های ضدسایش عالی، فرایندپذیری ساده و استحکام زیاد در برابر پارگی اشاره کرد. در این مقاله، پس از معرفی اجمالی رزین‌های اپوکسی و پلی‌یورتان‌ها‌، روش‌ها و سازوکار‌های بهبود چقرمگی شکست رزین اپوکسی با استفاده از پلی‌یورتان مرور می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Toughening Modification of Epoxy Resins Using Polyurethanes: A Review

نویسندگان [English]

  • Hossein Abdollahi
  • Ali Salimi
  • Mehdi Barikani
  • Hamed Daemi
چکیده [English]

Thermoset polymers have excellent properties of high dimensional stability at elevated temperatures, low creep and good resistance against solvents due to their three-dimensional crosslinking structure. Proper thermal-mechanical properties for these polymers are based on such cured structures with high crosslink density. Due to its excellent mechanical properties, epoxy resin has been widely used in coatings, adhesives and composites. In recent years, a variety of modification procedures have been introduced for toughening of cured resin structure in order to minimize crack formation and improve their impact resistance. Chemical modification of epoxy resins with polyurethanes is one of the most efficient procedures to achieve this goal. Polyurethanes have unique properties including good abrasion resistance, ease of processing and high rupture strength. After a brief introduction of epoxy and polyurethane resins, the procedures and the mechanisms of fracture toughness in polyurethane-modified epoxy are reviewed in present article. Different polyurethanes with wide range of chemical structures are able to toughen the epoxy structure efficiently and provide improved resins for use indifferent applications.

کلیدواژه‌ها [English]

  • epoxy resin
  • polyurethane
  • mechanical properties
  • fracture toughness
  • chemical modification
1. Ratna D., Handbook of Thermoset Resins, Smithers Rapra, UK, 237-280, 2009.
2. Hedrick J., Yilgor I., Jurek M., Hedrick J.C., Wilkes G.L., and McGrath J.E., Chemical Modification of Matrix Resin Networks with Engineering Thermoplastics: 1. Synthesis, Morphology, Physical Behaviour and Toughening Mechanisms
of Poly(arylene ether sulphone) Modified Epoxy Networks,Polymer, 32, 2020–2032, 1991.
3. Sinh L.H., Son B.T., Trung N.N., Lim D.G., Shin S., and BaeJ.Y., Improvements in Thermal, Mechanical, and Dielectric
Properties of Epoxy Resin by Chemical Modification with aNovel Amino-terminated Liquid-crystalline Copoly(ester amide),
React. Funct. Polym., 72, 542–548, 2012.
4. Sun X., Zeng M., Lu C., Yan F., and Qi C., Modification ofEpoxy Resin by Cyanate Ester Resin and Liquid Butadiene-
Acrylonitrile Rubbers, Polym. Plast. Technol. Eng., 49, 772–778, 2010.
5. Foix D., Yu Y., Serra A., Ramis X., and Salla J.M., Study onthe Chemical Modification of Epoxy/anhydride Thermosets
Using a Hydroxyl Terminated Hyperbranched Polymer, Eur.Polym. J., 45, 1454–1466, 2009.
6. Daemi H., Rezaieyeh Rad R., Barikani M., and Adib M., CatalyticActivity of Aqueous Cationic Polyurethane Dispersions:
A Novel Feature of Polyurethanes, Appl. Catal., A, 468, 10-17, 2013.
7. Chen T.K., Chui J.Y., and Shieh T.S., Glass Transition Behaviorsof a Polyurethane Hard Segment based on 4,4‘-Diisocyanatodiphenylmethaneand 1,4-Butanediol and the Calculationof Microdomain Composition, Macromolecules, 30, 5068–5074, 1997.
8. Daemi H., Barikani M., and Barmar M., A Simple Approachfor Morphology Tailoring of Alginate Particles by Manipulation
Ionic Nature of Polyurethanes, Int. J. Biol. Macromol.,66, 212-220, 2014.
9. Daemi H., Barikani M., and Barmar M., Highly StretchableNanoalginate Based Polyurethane Elastomers, Carbohydr.
Polym., 95, 630–636, 2013.
10. Song J., Wu G., Shi J., Ding Y., Chen G., and Li Q., Propertiesand Morphology of Interpenetrating Polymer Networks Basedon Poly(urethane-imide) and Epoxy Resin, Macromol. Res.,18, 944–950, 2010.
11. Matricardi P., Di Meo C., Coviello T., Hennink W.E., and AlhaiqueF., Interpenetrating Polymer Networks Polysaccharide
Hydrogels for Drug Delivery and Tissue Engineering, Adv.Drug Delivery Rev., 65, 1172–1187, 2013.
12. Chen Y., Ding D., Mao Z., He Y., Hu Y., Wu W., and Jiang X.,Synthesis of Hydroxypropyl cellulose-poly(acrylic acid) Particleswith Semi-interpenetrating Polymer Network Structure,Biomacromolecules, 9, 2609–2614, 2008.
13. Chen S., Tian Y., Chen L., and Hu T., Epoxy Resin/PolyurethaneHybrid Networks Synthesized by Frontal Polymerization,Chem. Mater., 18, 2159–2163, 2006.
14. Hsieh K.H., Han J.L., Yu C.T., and Fu S.C., Graft InterpenetratingPolymer Networks of Urethane-modified Bismaleimide
and Epoxy (I): Mechanical Behavior and Morphology,Polymer, 42, 2491–2500, 2001.
15. Kostrzewa M., Hausnerova B., Bakar M., and Dalka M., PropertyEvaluation and Structure Analysis of Polyurethane/EpoxyGraft Interpenetrating Polymer Networks, J. Appl. Polym.Sci., 122, 1722–1730, 2011.
16. Takeichi T., Ujiie K., and Inoue K., High PerformancePoly(urethane-imide) Prepared by Introducing Imide Blocks
into the Polyurethane Backbone, Polymer, 46, 11225–11231,2005.
17. Yeganeh H. and Shamekhi M.A., Poly(urethane-imide-imide),A New Generation of Thermoplastic Polyurethane Elastomerswith Enhanced Thermal Stability, Polymer, 45, 359–365,2004.
18. Prabu A. and Alagar M., Thermal and Morphological Propertiesof Silicone-polyurethane-epoxy Intercrosslinked Matrix
Materials, J. Macromol. Sci., Part A: Pure Appl. Chem., 42,175–188, 2005.
19. Ghozali M., Triwulandari E., and Haryono A., Preparation andCharacterization of Polyurethane-Modified Epoxy with VariousTypes of Polyol, Macromol. Symp., 353, 154–160, 2015.
20. Xu G., Zhao Y., and Shi W., Properties and Morphologies ofUV-cured Epoxy Acrylate Blend Films Containing HyperbranchedPolyurethane Acrylate/hyperbranched Polyester, J.Polym. Sci., Part B: Polym. Phys., 43, 3159–3170, 2005.
21. Boogh L., Pettersson B., Kaiser P., and Manson J.A.E., NovelTougheners for Epoxy-based Composites, SAMPE J., 33,
236–244, 1997.
22. Gopala A., Wu H., Xu J., and Heiden P., Investigation ofReadily Processable Thermoplastic-Toughened Thermosets:
IV. BMIs Toughened with Hyperbranched Polyester, J. Appl.Polym. Sci., 71, 1809–1817, 1999.
23. Ratna D., Varley R., and Simon G.P., Toughening of TrifunctionalEpoxy Using an Epoxy-Functionalized Hyperbranched
Polymer, J. Appl. Polym. Sci., 89, 2339–2345, 2003.
24. Fu J., Shi L., Yuan S., Zhong Q.D., Zhang D.S., Chen Y., andWu J., Morphology, Toughness Mechanism, and Thermal
Properties of Hyperbranched Epoxy Modified DiglycidylEther of Bisphenol A (DGEBA) Interpenetrating Polymer
Networks, Polym. Adv. Technol., 19, 1597–1607, 2008.
25. Xu G., Shi W., Gong M., Yu F., and Feng J., Curing Behaviorand Toughening Performance of Epoxy Resins Containing
Hyperbranched Polyester, Polym. Adv. Technol., 15, 639–644,2004.
26. Deng S., Djukic L., Paton R., and Ye L., Thermoplastic–epoxyInteractions and Their Potential Applications in Joining
Composite Structures – A Review, Composites Part A., 68,121–132, 2015.
27. Manjula D., Jaisankar S.N., and Pathak M., Effect of New HyperbranchedPolyester of Varying Generations on Tougheningof Epoxy Resin through Interpenetrating Polymer NetworksUsing Urethane Linkages, Eur. Polym. J., 49, 3561–3572,2013.
28. Barcia F.L., Abrahão M.A., and Soares B.G., Modificationof Epoxy Resin by Isocyanate-Terminated Polybutadiene, J.
Appl. Polym. Sci., 83, 838–849, 2002.
29. Ramos V.D., Da Costa H.M., Soares V.L.P., and NascimentoR.S.V., Modification of Epoxy Resin: A Comparison of DifferentTypes of Elastomer, Polym. Test., 24, 387–394, 2005.
30. Girard-Reydet E., Sautereau H., Pascault J.P., Keates P., Navard P., Thollet G., and Vigier G., Reaction-induced Phase
Separation Mechanisms in Modified Thermosets, Polymer,39, 2269–2279, 1998.
31. Kunz S.C. and Beaumont P.W.R., Low-temperature Behaviourof Epoxy-rubber Particulate Composites, J. Mater. Sci.,
16, 3141–3152, 1981.
32. Spontak R.J., Roberge R.L., Vratsanos M.S., and StarnerW.E., Model Acrylate-terminated Urethane Blends in ToughenedEpoxies: A Morphology and Stress Relaxation Study,Polymer, 41, 6341–6349, 2000.
33. Okamatsu T., Effect on the Toughness and Adhesion Propertiesof Epoxy Resin Modified with Silyl-crosslinked Urethane
Microsphere, Polymer, 43, 721–730, 2002.
34. Lee J.Y. and Jang J., The Effect of Mesogenic Length on theCuring Behavior and Properties of Liquid Crystalline Epoxy
Resins, Polymer, 47, 3036–3042, 2006.
35. Lu S., Ban J., Yu C., and Deng W., Properties of Epoxy ResinsModified with Liquid Crystalline Polyurethane, Iran. Polym.J., 19, 669–678, 2010.