خواص نورپاسخگویی پلیمرهای آزوی دومحیط‌دوست

نوع مقاله : تالیفی

نویسندگان

1 هیات علمی/دانشگاه شهید مدنی آذربایجان

2 فارغ التحصیل

چکیده

اغلب خواص جالب در پلیمرهای آزو، به‌طور مستقیم با ایزومری‌شدن نوری ترانس-سیس واحدهای آزوبنزن در ساختارهای پلیمری ارتباط دارند. ایزومری‌شدن ترانس-سیس آزوبنزن و ترکیبات آن با روش‌های مختلف تجربی و نظری به‌طور گسترده بررسی شده است. پلیمرهای آزوی دومحیط‌دوست می‌توانند ترکیبی از خواص نورپاسخگویی پلیمرهای آزو و ویژگی خودگردایش پلیمرهای دومحیط‌دوست را داشته باشند. این پلیمرها با روش خودگردایش قابلیت تشکیل فیلم‌های فرانازک، ساختارهای دارای جدایی فاز منظم در توده، میسل، وزیکول و سایر انبوهه‌های دارای تکه‌های مولکول آزوبنزن را نشان می‌دهند. خواص منحصربه‌فرد نورپاسخگویی مربوط به ساختارهای خودگردایشی مشاهده شده و با هدف کاربردهای بالقوه بررسی شده‌اند. پژوهش‌ها نشان داده‌اند، تابش‌دهی نوری می‌تواند موجب شکل‌گیری شبکه برجسته ‌سطح، تغییر شکل فیلم‌های نازک الاستومری بلورمایع و کره‌های کلوییدی و تشکیل الگوهای سطح خودساختاریافته شود. در این مقاله، پلیمرهای آزوی دومحیط‌دوستی مرور می‌شوند که از قابلیت ارائه مجموعه‌ای منحصربه‌فرد از خواص نورپاسخگویی، در ارتباط با معماری مولکولی ویژه و ویژگی خودگردایش این ساختارها برخوردارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Photoresponsive Properties of Amphiphilic Azo Polymers

چکیده [English]

Most interesting properties of azo polymers are directly related with the trans-cis photoisomerization of the azobenzene units present in their polymer structure. Trans-cis isomerization of azobenzene and its derivatives has been intensively investigated theoretically and experimentally. Amphiphilic azo polymers can combine the photoresponsive properties of azo polymers with the self-assembling characteristics of amphiphilic polymers. The polymers show ability to form ultra-thin films, ordered phase-separation structure in bulk, micelle, vesicles, and other aggregates containing azobenzene moieties through self-assembly. Unique photoresponsive properties related with the self-assembled structures of azo polymers have been observed and explored for potential applications. Research works have demonstrated that light irradiation manifests itself in wide variations such as surface relief grating formation, deformation of liquid crystal elastomeric thin films, deformation of colloidal spheres and formation of self-structured surface patterns. In this review, a series of unique photoresponsive properties of amphiphilic azo polymers associated with the specific molecular architecture and self-assembling characteristics of their structures are reported.

کلیدواژه‌ها [English]

  • amphiphilic polymer
  • azo polymer
  • photoresponsive
  • azobenzene
  • self-assembly
1. Huang Y., Kang H., Li G., Wang C., Huang Y., and Liu R.,Synthesis and Photosensitivity of Azobenzene Functionalized
Hydroxypropylcellulose, RSC Adv., 3, 15909-15916, 2013.
2. Yoneyama S., Yamamoto T., Tsutsumi O., Kanazawa A.,Shiono T., and Ikeda T., High-Performance Material for Holographic
Gratings by Means of a Photoresponsive PolymerLiquid Crystal Containing a Tolane Moiety with High Birefringence,
Macromolecules, 35 , 8751–8758, 2002.
3. Pinto L.F.V., Kundu S., Brogueira P., Cruz C., Fernandes S.N.,Aluculesei A., and Godinho M.H., Cellulose-Based Liquid
Crystalline Photoresponsive Films with Tunable Surface Wettability,Langmuir, 27, 6330–6337, 2011.
4. Brown A.A., Azzaroni O., and Huck W.T.S., PhotoresponsivePolymer Brushes for Hydrophilic Patterning, Langmuir, 25,
1744–1749, 2009.
5. Wang W., Wang X.Z., Cheng F.T., Yu Y.L., and Zhu Y.T.,Light-Driven Soft Actuators Based on Photoresponsive Polymer
Materials, Prog. Chem., 23, 1165–1173, 2011.
6. Beharry A.A. and Woolley G.A., Azobenzene Photoswitches for Biomolecules, Chem. Soc. Rev., 40, 4422–4437, 2011.
7. Wu C., Synthesis and Characterization of a Novel series of Unsymmetric Dimesogenic Compounds Containing Cholesteryl
Ester and Nitroazobenzene Moieties, Mater. Lett., 61,1380–1383, 2007.
8. Feng X.J. and Jiang L., Design and Creation of Superwetting/Antiwetting Surfaces, Adv. Mater., 18, 3063–3078, 2006.
9. Petr M. and Hammond P.T., Room Temperature Rapid Photoresponsive Azobenzene Side Chain Liquid Crystal Polymer,
Macromolecules, 44, 8880–8885, 2011.
10. Zhao Y., Light-Responsive Block Copolymer Micelles, Macromolecules,45, 3647–3657, 2012.
11. Dong R., Zhu B., Zhou Y., Yan D., and Zhu X., Reversible photoisomerization of Azobenzene-Containing Polymeric
Systems Driven by Vvisible Light, Polym. Chem., 4, 912–915,2013.
12. Chen C.J., Liu G.Y., Liu X.S., Li D.D., and Ji J., Construction of Photo-Responsive Micelles from Azobenzene-Modified
Hyperbranched Polyphosphates and Study of their Reversible Self-Assembly and Disassembly Behaviours, RSC Adv., 36,
694-701, 2012.
13. Ganta S., Devalapally H., Shahiwala A., and Amiji M., A Review of Stimuli-Responsive Nanocarriers for Drug and Gene
Delivery, J. Control. Release, 126, 187-204, 2008.
14. Klaikherd A., Nagamani C., and Thayumanavan S., Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies,
J. Am. Chem. Soc., 131, 4830-4838, 2009.
15. Zhao Y., Photocontrollable Block Copolymer Micelles: What Can We Control?, Mater J. Chem., 19, 4887-4895, 2009.
16. Chen C.J., Liu G.Y., Shi Y.T., Zhu C.S., Pang S.P., Liu X.S.,and Ji J., Biocompatible Micelles Based on Comb-like PEG
Derivates: Formation, Characterization, and Photo-responsiveness,Macromol. Rapid Commun., 32, 1077-1081, 2011.
17. Feng N., Han G., Dong J., Wu H., Zheng Y., and Wang G.,Nanoparticle Assembly of a Photo- and pH-Responsive Random
Azobenzene Copolymer, J. Colloid Interface Sci., 421,15–21, 2014.
18. Feng C.L., Zhang Y.J., Jin J., Song Y.L., Xie L.Y., Qu G.R.,Jiang L., and Zhu D.B., Reversible Wettability of PhotoresponsiveFluorine-Containing Azobenzene Polymer in Langmuir−Blodgett Films, Langmuir, 17, 4593-4597, 2001.
19. Feng C.L., Qu G.R., Song Y.L., Jiang L., and Zhu D.B., SurfaceArrangement of Azobenzene Moieties in Two Different
Azobenzene-Derived Langmiur–Blodgett Films, Surf. Interface Anal., 38, 1343-1347, 2006.
20. Rodahl M., Höök F., Krozer A., and Brzezinski P., QuartzCrystal Microbalance Setup for Frequency and Q-factor Measurementsin Gaseous and Liquid Environments, Rev. Sci. Instrum.,66, 3924-3930, 1995.
21. Kumar S.K. and Hong J.D., Photoresponsive ion Gating Functionof An Azobenzene Polyelectrolyte Multilayer Spin-selfassembledon a Nanoporous Support, Langmuir, 24, 4190–4193, 2008.
22. Seki T. and Tamaki T., Photomechanical Effect in Monolayersof Azobenzene Side Chain Polymers, Chem. Lett., 22, 1739–
1742, 1993.
23. Seki T., Sekizawa H., Morino S., and Ichimura K., Inherent and Cooperative Photomechanical Motions in Monolayers of
an Azobenzene Containing Polymer at the Air–Water Interface,J. Phys. Chem. B, 102, 5313–5321, 1998.
24. Ercole F., Davis T.P., and Evans R.A., Photo-Responsive Systems and Biomaterials: Photochromic Polymers, Light- Triggered Self-assembly, Surface Modification, FluorescenceModulation and Beyond, Polym. Chem., 1, 37-54, 2010.
25. Abdollahi A., Keyvanrad J., and Mahdavian A.R., Smart Polymers:ΙV. Photochromic Polymers and Photochromism Phenomenon,Polymerization (In persian), 5, 37-47, 2015.
26. Camacho-Lopez M., Finkelmann H., Palffy-Muhoray P., andShelley M., Fast Liquid-Crystal Elastomer Swims into the
Dark, Nat. Mater., 3, 307-310, 2004.
27. Chen D., Liu H., Kobayashi T., and Yu H., Fabrication ofRegularly Patterned Microporous Films by Self-Organization
of an Amphiphilic Liquid-Crystalline Diblock Copolymer in a Dry Environment, Macromol. Mater. Eng., 295, 26–31, 2010.
28. Yu H. and Kobayashi T., Photoresponsive Block CopolymersContaining Azobenzenes and Other Chromophores, Molecules,
15, 570-603, 2010.
29. Rochon P., Batalla E., and Natansohn A., Optically InducedSurface Gratings on Azoaromatic Polymer-Films, Appl. Phys.
Lett., 66, 136–138, 1995.
30. Kim D.Y., Tripathy S.K., Li L., and Kumar J., Laser-Induced Holographic Surface-Relief Gratings on Nonlinear-Optical
Polymer Films, Appl. Phys. Lett., 66, 1166–1168, 1995.
31. Mahimwalla Z., Yager K.G., Mamiya J., Shishido A., PriimagiA., and Barrett C.J., Azobenzene Photomechanics: Prospects
and Potential Applications, Polym. Bull., 69, 967-1006, 2012.
32. Meinhardt R., Macko S., Qi B., Draude A., Zhao Y., WenigW., and Franke H., Photoinduced Molecular Motion in an
Azobenzene-Containing Diblock Copolymer, J. Phys. D, 41,41–49, 2008.
33. Wang D.R., Ye G., Zhu Y., and Wang X.G., PhotoinducedMass-Migration Behavior of Two Amphiphilic Side-Chain
Azo Diblock Copolymers with Different Length FlexibleSpacers, Macromolecules, 42, 2651–2657, 2009.
34. Wang X.G., Balasubramanian S., Kumar J., Tripathy S.K, andLi L., Azochromophore-Functionalized Polyelectrolytes. 1.
Synthesis, Characterization, and Photoprocessing, Chem. Mater.,10, 1546–1553, 1998.
35. Wang H.P., He Y.N., Tuo X.L., and Wang X.G., SequentiallyAdsorbed Electrostatic Multilayers of Branched Side-Chain
Polyelectrolytes Bearing Donor–Acceptor Type Azo Chromophores,Macromolecules, 37, 135–146, 2004.
36. Yu H.F., Okano K., Shishido A., Ikeda T., Kamata K., KomuraM., and Iyoda T., Enhancement of Surface-Relief Gratings
Recorded on Amphiphilic Liquid-Crystalline Diblock Copolymer by Nanoscale Phase Separation, Adv. Mater., 17,2184–2188, 2005.
37. Morikawa Y., Nagano S., Watanabe K., Kamata K., Iyoda T.,and Seki T., Optical Alignment and Patterning of Nanoscale
Microdomains in a Block Copolymer Thin Film, Adv. Mater.,18, 883–886, 2006.
38. Emoto A., Uchida E., and Fukuda T., Optical and PhysicalApplications of Photocontrollable Materials: Azobenzene-
Containing and Liquid Crystalline Polymers, Polymers, 4,150-186, 2012.
39. Jung B.D., Stumpe J., and Hong J.D., Influence of Multilayer Nanostructures on Photoisomerization and Photoorientation
of Azobenzene, Thin Solid Films, 441, 261–270, 2003.
40. Ubukata T., Seki T., and Ichimura K., Modeling the InterfaceRegion of Command Surface 1. Structural Evaluations of
Azobenzene/Liquid Crystal Hybrid Langmuir Monolayers, J.Phys. Chem. B, 104, 4141–4147, 2000.
41. Yu H.F., Iyoda T., and Ikeda T., Photoinduced Alignment ofNanocylinders by Supramolecular Cooperative Motions, J.
Am. Chem. Soc., 128, 11010–11011, 2006.
42. Li Y.B., He Y.N., Tong X.L., and Wang X.G., PhotoinducedDeformation of Amphiphilic Azo Polymer Colloidal Spheres,
J. Am. Chem. Soc., 127, 2402–2403, 2005.
43. Wang D.R., Ye G., and Wang X.G., Synthesis of Aminoazobenzene-Containing Diblock Copolymer and Photoinduced
Deformation Behavior of Its Micelle-like Aggregates, Macromol.Rapid Commun., 28, 2237–2243, 2007.
44. Wang G., Tong X., Zhao Y., Preparation of Azobenzene-ContainingAmphiphilic Diblock Copolymers for Light-Responsive
Micellar Aggregates, Macromolecules, 37, 8911–8917,2004.
45. Han K., Su W., Zhong M.C., Yan Q., Luo Y.H., Zhang Q.J.,and Li Y.M., Reversible Photocontrolled Swelling-Shrinking
Behavior of Micron Vesicles Self-Assembled from Azopyridine-Containing Diblock Copolymer., Macromol. Rapid Commun.,
29, 1866–1870, 2008.
46. Wang S., Shen Q., Nawaz M.H., and Zhang W., PhotocontrolledReversible Supramolecular Assemblies of a Diblock
Azo-Copolymer Based on b-Cyclodextrin–Azo Host–Guest Inclusion Complexation, Polym. Chem., 4, 2151–2157, 2013.
47. Jin Q., Luy C., Ji J., and Agarwal S., Design and Proof ofReversible Micelle-To-Vesicle Multistimuli-Responsive Morphological Regulations, J. Polym. Sci. A Polym. Chem., 50, 451–457, 2012.