مروری بر کاربرد داربست‌های اصلاح‌شده با درخت‌سان‌ها در مهندسی بافت

نوع مقاله : تالیفی

نویسندگان

1 دانشگاه امیر کبیر-دانشکده مهندسی مواد و متالورژی

2 دانشگاه امیرکبیر

10.22063/basparesh.2025.35591.1719

چکیده

مهندسی بافت، علمی چندجانبه است که در آن از اصول مهندسی، پزشکی و فیزیولوژی به ترمیم بافت آسیب‌دیده یا بازسازی بافت ازدست‌رفته به‌کمک رشد و تکثیر سلول‌ها استفاده می‌شود. این کار در بستری به نام داربست انجام می‌شود. داربست‌ها به‌عنوان زیست‌کامپوزیت برای اهداف مختلف از‌جمله دارورسانی، مهندسی بافت، ترمیم زخم و پوست استفاده می‌شوند. این ترکیبات، ساختار متخلخلی دارند که بستر مناسبی را برای تکثیر و رشد سلول‌ها فراهم می‌کنند. در طراحی داربست‌ها به‌عنوان بستر رشد سلول‌‌ها، لازم است به عوامل مهمی ازجمله تعداد و اندازه تخلخل‌ها، آب‌دوستی، زیست‌سازگازی، خواص مکانیکی مطلوب و قابلیت برخورداری از ساختارهای سه‌بعدی و پیچیده توجه شود تا هدف مهندسی بافت برآورده شود. اصلاح ساختار داربست‌ها به‌منظور افزایش کارایی و عملکرد آن‌ها و رفع نواقص و ضعف این ساختارها در مهندسی بافت انجام می‌شود. از میان تمام درخت‌سان‌ها، پلی(آمیدوآمین) (PAMAM) به‌دلیل زیست‌سازگاری، کنترل‌پذیری اندازه و ایمنی‌زایی کم برای اصلاح سطحی داربست‌ها استفاده می‌شود. ازجمله اصلاحاتی که روی داربست‌ها انجام شده، اصلاح داربست پلی‌کاپرولاکتون (PCL) با PAMAM نسل دو، برای انتقال داروی ضدسرطان کورکومین است تا فعالیت ضدسرطان آن بررسی شود. نتایج نشان داد با افزایش غلظت PAMAM، میزان مهار سلول‌های سرطان سینه از %5/31 به %4/42 افزایش یافت. در این مقاله، مهندسی بافت، کاربرد داربست‌های اصلاح‌شده با درخت‌سان‌های مختلف و بهبود خواص داربست‌ها در مهندسی بافت معرفی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on the Application of Scaffolds Modified with Dendrimer- in Tissue Engineering

نویسندگان [English]

  • Sepideh Amjad-Iranagh 1
  • Maryam Bendokht 2
1 Department of Materials and Metallurgical Engineering
2 Department of Materials and Metallurgical engineering
چکیده [English]

Tissue engineering is a multidisciplinary science that combines engineering, medicine, and physiology to repair damaged tissues or regenerate lost tissues through the growth and proliferation of cells. This process is carried out within a structure known as a scaffold. Scaffolds as bio-composites are used in various areas such as drug delivery, tissue engineering, wound healing and skin regeneration. These structures are porous, providing a suitable environment for cell proliferation and growth. In designing scaffolds as a platform for cell growth, it is necessary to consider key factors such as pore size and distribution, hydrophilicity, biocompatibility, desirable mechanical properties, and the ability to mimic complex three-dimensional structures to support the aims of tissue engineering. Scaffold modification is performed to enhance their efficiency and performance, as well as to overcome existing limitations and challenges. Among dendrimers, poly(amidoamine) (PAMAM) has been widely used for surface modification of scaffolds, due to its biocompatibility, controllable size, and low immunogenicity. One example is the incorporation of second-generation PAMAM into polycaprolactone (PCL) scaffolds for the delivery of the anticancer drug curcumin to evaluate its anticancer activity. The results showed that with increasing PAMAM concentration, the inhibition rate of breast cancer cells increased from 31.5% to 42.4%. In this article, tissue engineering, the application of dendrimer-modified scaffolds, and the improvement of scaffold properties in tissue engineering are introduced.

کلیدواژه‌ها [English]

  • dendrimer
  • scaffold
  • tissue engineering
  • drug delivery
  • surface modification
  1.  

    1. Vardhan H., Jain A., and Singhai A.K., Potential of Dendrimers in Drug Delivery: An Updated Review, Asian J. Res. Pharm. Sci., 14, 242-254, 2024.
    2. Oliveira J.M., Salgado A.J., Sousa N. et al., Dendrimers and Derivatives as a Potential Therapeutic Tool in Regenerative Medicine Strategies—A Review, Polym. Sci., 35, 1163-1194, 2010.
    3. Bielska B., Wrońska N., Kołodziejczyk-Czepas J. et al., Biocompatibility of Phosphorus Dendrimers and Their Antibacterial Properties as Potential Agents for Supporting Wound Healing, Pharmaceutics, 22, 927-939, 2025.
    4. Choudhury H., Patro Sisinthy S., Gorain B., and Kesharwani P., History and Introduction of Dendrimers, In Dendrimer-Based Nanotherapeutics, 1st Edition Elsevier, Amsterdam, 1-14, 2021.
    5. Hollister S.J., Scaffold Design and Manufacturing: From Concept to Clinic, Mater., 21, 3330-3342, 2009.
    6. Prasad A., Biomaterial-Based Nanofibers Scaffolds in Tissue Engineering Application, In Functional Biomaterials, Jana S. and Jana S. (Eds.), Springer, Singapore, 2022.
    7. Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D., Hoffman A.S., Schoen F.J., and Lemons J.E. (Eds.), 2nd ed., Elsevier, Netherlands, 58-60, 2004.
    8. Dendrimer-Based Nanotherapeutics, Kesharwani P. (Ed.), Academic, USA, 1, 2021.
    9. Najafi F., Salami-Kalajahi M., and Roghani-Mamaqani H., A Review on Synthesis and Applications of Dendrimers, Iranian Chem. Soc., 18, 503-517, 2021.
    10. Wang J., Li B., Qiu L., Qiao X., and Yang H., Dendrimer-Based Drug Delivery Systems: History, Challenges, and latest Developments, Biol. Eng., 16, 18, 2022.
    11. Li J., Liang H., Liu J., and Wang Z., Poly(amidoamine) (PAMAM) Dendrimer Mediated Delivery of Drug and pDNA/siRNA for Cancer Therapy, J. Pharm., 546, 215-225, 2018.
    12. Liu F., Wang X., Li Y. et al., Dendrimer-Modified Gelatin Methacrylate Hydrogels Carrying Adipose-Derived Stromal/Stem Cells Promote Cartilage Regeneration, Stem Cell Res. Ther., 13, 26, 2022.
    13. Florendo M., Figacz A., Srinageshwar B. et al., Use of Polyamidoamine Dendrimers in Brain Diseases, Molecules, 23, 2238, 2018.
    14. Ganjalinia A., Akbari S., and Solouk A., Tuning Poly(L-lactic acid) Scaffolds with Poly(amidoamine) and Poly(propylene imine) Dendrimers: Surface Chemistry, Biodegradation and Biocompatibility, Macromol. Sci., Part A: Pure Appl. Chem., 58, 433-447, 2021.
    15. Undre S.B., Pandya S.R., Kumar V., and Singh M., Dendrimers as Smart Materials for Developing the Various Applications in the Field of Biomedical Sciences, Mater. Lett., 7, 502-516, 2016.
    16. Langer R. and Vacanti J.P., Tissue engineering, Science, 260, 920-926, 1993.
    17. Liu X., Schreiber A.C., Astudillo Potes M.D. et al., Bone Enzyme-Responsive Biodegradable Poly(propylene fumarate) and Polycaprolactone Polyphosphoester Dendrimer Cross-Linked via Click Chemistry for Bone Tissue Engineering, Biomacromolecules, 26, 835-847, 2025.
    18. Liu Y., Chen X., Tan X. et al., Double Network Hydrogels Encapsulating Genetically Modified Dedifferentiated Chondrocytes for Auricular Cartilage Regeneration, Mater. Chem. B, 13, 1823-1844, 2025.
    19. Khalili M., Keshvari H., Imani R., Naderi Sohi A., Esmaeili E., and Tajabadi M., Study of Osteogenic Potential of Electrospun PCL Incorporated by Dendrimerized Superparamagnetic Nanoparticles as a Bone Tissue Engineering Scaffold, Mater. Sci. Mater. Med., 33, 782-794, 2022.
    20. Bauso L.V., La Fauci V., Calabrese C., and Calabrese G., Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration, Biology, 13, 237, 2024.
    21. Fortunato T.M., De Bank P.A., and Pula G., Vascular Regenerative Surgery: Promised Land for Tissue Engineers?, J. Stem Cell Res. Transplant., 5, 268-276, 2017.
    22. Li B., Moriarty T.F., Webster T., and Xing M., Racing for the Surface: Antimicrobial and Interface Tissue Engineering, 1st Ed., Springer, 809, 2020.
    23. Mirzadeh D.H., Application of Polymers in Medicine, Amirkabir University of Technology, Tehran, 906, 2023.
    24. Wu, J. and Hong Y., Enhancing Cell Infiltration of Electrospun Fibrous Scaffolds in Tissue Regeneration, Mater., 1, 56-64, 2016.
    25. Shimojo A.A.M., Rodrigues I.C.P., Perez A.G.M., Souto E.M.B., Gabriel L.P., and Webster T., Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization, In Racing for the Surface: Antimicrobial and Interface Tissue Engineering, Webster (Ed.), Springer, 647-676, 2020.
    26. Teimouri R., Abnous K., Taghdisi S.M., Ramezani M., and Alibolandi M., Surface Modifications of Scaffolds for Bone Regeneration, Mater. Res. Technol., 24, 7938-7973, 2023.
    27. Tolabi H., Bakhtiary N., Sayadi S., Tamaddon M., Ghorbani F., Boccaccini A.R., and Liu C., A Critical Review on Polydopamine Surface-Modified Scaffolds in Musculoskeletal Regeneration, Front. Bioeng. Biotechnol., 10, 1008360, 2022.
    28. Koeini F., Solouk A., and Akbari S., Graphene Oxide-Incorporated Polylactic Acid/Polyamidoamine Dendrimer Electroconductive Nanocomposite as a Promising Scaffold for Guided Tissue Regeneration, Mater. Eng., 309, 2400100, 2024.
    29. Razmshoar P., Hajir Bahrami S., and Akbari S., Functional Hydrophilic Highly Biodegradable PCL Nanofibers through Direct Aminolysis of PAMAM Dendrimer, J. Polym. Mater. Polym. Biomater., 69, 1069-1080, 2020.
    30. Vedhanayagam M., Suresh Kumar A., Unni Nair B., and Sreeram K.J., Dendrimer-Functionalized Metal Oxide Nanoparticle-Mediated Self-Assembled Collagen Scaffold for Skin Regenerative Application: Function of Metal in Metal Oxides, Biochem. Biotechnol., 194, 266–290, 2022.