مروری بر انواع ‌پلیمرهای ابرجاذب زیست‌پایه

نوع مقاله : سایر

نویسندگان

1 دانشگاه گیلان

2 پارک علم و فناوری گیلان

10.22063/basparesh.2025.35565.1714

چکیده

سلولوز پلی‌ساکاریدی است که با گروه ­های هیدروکسیل متعدد و ظرفیت جذب آب زیاد به‌عنوان فراوان‌ترین پلیمر طبیعی در صنعت استفاده می‌شود. هیدروژل‌های برپایة سلولوز، ابرجاذب­ هایی هستند که قابلیت ایجاد شبکه‌های سه‌بعدی را دارند. پیوندهای شیمیایی یا سایر نیروهای چسبنده، مانند پیوند هیدروژنی یا برهم‌کنش‌های یونی، زنجیر‌های سلولوز را در کنار هم نگه می‌دارند. هیدروژل­ ها می‌توانند آب و سایر مایعات آبی را در شبکه‌های سه‌بعدی خود جذب کنند و به‌دنبال آن متورم شوند، اما در آن‌ها نامحلول باشند. امروزه تقاضای فزاینده ­ای برای مواد زیست‌تخریب‌پذیر و محصولات ساخته‌شده از آن­ ها مانند سلولوز وجود دارد. زیست‌تخریب ­پذیری و سازگاری با محیط‌زیست مناسب سلولوز، استفاده گسترده از آن را در محصولات مراقبت شخصی امکان­ پذیر کرده است. هیدروژل سلولوزی برای این محصولات به‌عنوان یک ابرجاذب عمل می‌کند و به‌عنوان عامل جذب اصلی یا جاذب کمکی با قابلیت محافظت از پوست استفاده می‌شود. محصولات جاذب سلولوزی بهداشتی مانند پوشک، آستر لباس‌زیر، تامپون، دستمال توالت و دستمال کاغذی به‌عنوان محصولات مراقبت شخصی استفاده می‌شوند. این محصولات در رتبه‌بندی‌های مختلف جذب از کم تا بسیارزیاد موجود هستند. با استفاده از هیدروژل برپایة سلولوز، محصولات ابرجاذب ساخته می‌شوند. در این مقاله، کاربردهای هیدروژل برپایة سلولوز در انواع محصولات مراقبت شخصی مرور شده است.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of types of Bio-based Superabsorbent Polymers

نویسندگان [English]

  • Hesam Niknezhad 1
  • Amir Mohamadpour 2
1 university of guilan
2 Guilan Science and Technology Park
چکیده [English]

Cellulose is a polysaccharide with numerous hydroxyl groups and high water absorption capacity, and is the most abundant natural polymer used in the industry. Cellulose-based hydrogels are superabsorbents that provide the ability to create three-dimensional networks. Chemical bonds or other cohesive forces, such as hydrogen bonding or ionic interactions, hold the cellulose chains together. Hydrogels can absorb water and other aqueous liquids into their three-dimensional networks and swell, but they are insoluble in them. Today, there is an increasing demand for biodegradable materials and products made from renewable sources such as cellulose. The biodegradability and environmental friendliness of cellulose have led to its widespread use in personal care products. Cellulose hydrogels act as superabsorbents for these products, which is used as the main absorbent or as an auxiliary absorbent with the ability to protect the skin. Hygienic absorbent cellulose products such as diapers, panty liners, tampons, toilet paper, and paper towels are used as personal care products. These products are available in different absorbency ratings from low to very high. Superabsorbent products are made using cellulose-based hydrogels. In this article, the applications of cellulose-based hydrogel in a variety of personal care products were reviewed.
 

کلیدواژه‌ها [English]

  • polysaccharide
  • cellulose products
  • superabsorbent
  • biodegradability
  • personal care products
  1. Dhiman J., Anupam K., Kumar V., and Saruchi S.A., Bio-based Superabsorbent Polymers: An Overview, In Bio-based Superabsorbents, 1-27, 2023.
  2. Bashari A., Rouhani Shirvan A., and Shakeri M., Cellulose‐Based Hydrogels for Personal Care Products,  Adv. Technol.29, 2853-2867, 2018.
  3. Chandel N., Jain K., Jain A., Raj T., Patel A.K., Yang Y.H., and Bhatia S.K., The Versatile World of Cellulose-Based Materials in Healthcare: From Production to Applications,  Crop. Prod.201, 116929, 2023.
  4. Omidian H., Akhzarmehr A., and Chowdhury S.D., Advancements in Cellulose-Based Superabsorbent Hydrogels: Sustainable Solutions Across Industries, Gels10, 174, 2024.
  5. Pattanayak R., Jena T., Pradhan S., and Mohanty S., Recent Advancement of Bio-Based Super Absorbent Polymer and Its Biodegradable and Recycling Behavior: A Vision and Future, -Plast. Technol. Mater.62, 1290-1317, 2023.
  6. Guan H., Li J., Zhang B., and Yu X., Synthesis, Properties, and Humidity Resistance Enhancement of Biodegradable Cellulose-Containing Superabsorbent Polymer,  Polym.2017, 2017.
  7. Qureshi M.A., Nishat N., Jadoun S., and Ansari M.Z., Polysaccharide Based Superabsorbent Hydrogels and their Methods of Synthesis: A Review,  Polym. Technol. Appl.1, 100014, 2020.
  8. Guan X., Zhang J., and Zhao S., Design, Synthesis and Characterization of a Starch-Based Superabsorbent Polymer and Its Impact on Autogenous Shrinkage of Cement Paste,  Build. Mater.415, 134986, 2024.
  9. Jyotish J., Nayak R., Tripathy D., Moharana S., and Mahaling R.N., Starch-Based Superabsorbent Polymer, In Bio-based Superabsorbents: Recent Trends, Types, Applications and Recycling, Springer, Singapore, 115-143, 2023.
  10. Llanes L., Dubessay P., Pierre G., Delattre C., and Michaud P., Biosourced Polysaccharide-Based Superabsorbents, Polysaccharides1, 51-79, 2020.
  11. Pethsangave D.A., Wadekar P.H., Khose R.V., and Some S., Super-Hydrophobic Carrageenan Cross-Linked Graphene Sponge for Recovery of Oil and Organic Solvent from their Water Mixtures,  Test.90, 106743, 2020.
  12. Thirumoolan D., Siva T., Ananthakumar R., and Nambi K.N., Alginate-Based Superabsorbents, in Bio-Based Superabsorbents: Recent Trends, Types, Applications and Recycling, Springer, Singapore, 93-114, 2023.
  13. Yang J., Wang J., Su Y., He X., Wang F., and Liang W., On the Factors Affecting the Swelling Behavior of Superabsorbent Polymers in Cement-Related Environment,  Build. Mater.409, 133938, 2023.
  14. Liu Y., Zhu Y., Mu B., Wang Y., Quan Z., and Wang A., Synthesis, Characterization, and Swelling Behaviors of Sodium Carboxymethyl Cellulose-g-Poly(acrylic acid)/Semi-Coke Superabsorbent,  Bull., 1-19, 2021.
  15. Capezza A.J., Newson W.R., Muneer F., Johansson E., Cui Y., Hedenqvist M.S. et al., Greenhouse Gas Emissions of Biobased Diapers Containing Chemically Modified Protein Superabsorbents,  Clean. Prod.387, 135830, 2023.
  16. Capezza A.J., Muneer F., Prade T., Newson W.R., Das O., Lundman M. et al., Acylation of Agricultural Protein Biomass Yields Biodegradable Superabsorbent Plastics,  Chem.4, 52, 2021.
  17. Pattanayak R. and Jena T., Bio-based Superabsorbent Polymer: Current Trends, Applications and Future Scope, In Bio-based Superabsorbents: Recent Trends, Types, Applications and Recycling, Springer, Singapore, 185-197, 2023.
  18. Rather R.A., Bhat M.A., and Shalla A.H., An Insight into Synthetic and Physiological Aspects of Superabsorbent Hydrogels based on Carbohydrate Type Polymers for Various Applications: A Review,  Polym. Technol. Appl.3, 100202, 2022.
  19. Peng J., Wang X., and Lou T., Preparation of Chitosan/Gelatin Composite foam with Ternary Solvents of Dioxane/Acetic Acid/Water and Its Water Absorption Capacity,  Bull.77, 5227-5244, 2020.
  20. Kenawy E.R., Seggiani M., Hosny A., Rashad M., Cinelli P., Saad-Allah K.M. et al., Superabsorbent Composites Based on Rice husk for Agricultural Applications: Swelling Behavior, Biodegradability in Soil and Drought Alleviation,  Saud. Chem. Soc.25, 101254, 2021.
  21. Aday A.N., Osio-Norgaard J., Foster K.E., and Srubar W.V., Carrageenan-Based Superabsorbent Biopolymers Mitigate Autogenous Shrinkage in Ordinary Portland Cement,  Struct.51, 1-13, 2018.
  22. Pourjavadi A. and Mahdavinia G.R., Chitosan-g-Poly(acrylic acid)/Kaolin Superabsorbent Composite: Synthesis and Characterization,  Polym. Compos.14, 203-212, 2006.
  23. Mignon A., Snoeck D., D’Halluin K., Balcaen L., Vanhaecke F., Dubruel P. et al., Alginate Biopolymers: Counteracting the Impact of Superabsorbent Polymers on Mortar Strength,  Build. Mater.110, 169-174, 2016.
  24. Cuadri A.A., Romero A., Bengoechea C., and Guerrero A., The Effect of Carboxyl Group Content on Water Uptake Capacity and Tensile Properties of Functionalized Soy Protein-Based Superabsorbent Plastics, Polym. Environ., 26, 2934–2944, 2018.
  25. Arican F., Uzuner-Demir A., Sancakli A., and Ismar E., Synthesis and Characterization of Superabsorbent Hydrogels from Waste Bovine Hair via Keratin Hydrolysate Graft with Acrylic Acid (AA) and Acrylamide (AAm),  Pap.75, 6601-6610, 2021.
  26. Pandey M., Mohd Amin M.C.I., Ahmad N., and Abeer M.M., Rapid Synthesis of Superabsorbent Smart‐Swelling Bacterial Cellulose/Acrylamide‐Based Hydrogels for Drug Delivery,  J. Polym. Sci.2013(1), 905471, 2013.
  27. Pourjavadi A., Hosseinzadeh H., and Sadeghi M.H.H.J., Synthesis, Characterization and Swelling Behavior of Gelatin-g-Poly(sodium acrylate)/Kaolin Superabsorbent Hydrogel Composites,  Compos. Mater.41, 2057-2069, 2007.
  28. Qiao D., Liu H., Yu L., Bao X., Simon G.P., Petinakis E., and Chen L., Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Starch-Based Superabsorbent Polymer,  Polym.147, 146-154, 2016.
  29. Pourjavadi A., Amini-Fazl M.S., and Hosseinzadeh H., Partially Hydrolyzed Crosslinked Alginate-Graft-Polymethacrylamide as a Novel Biopolymer-Based Superabsorbent Hydrogel Having pH-Responsive Properties,  Res.13, 45-53, 2005.
  30. Sorze A., Valentini F., Dorigato A., and Pegoretti A., Development of a Xanthan Gum Based Superabsorbent and Water Retaining Composites for Agricultural and Forestry Applications, Molecules28, 1952, 2023.
  31. Teli M.D. and Mallick A., Utilization of Waste Sorghum Grain for Producing Superabsorbent for Personal Care Products,  Polym. Environ.26, 1393-1404, 2018.
  32. Friedrich S., Superabsorbent Polymers (SAP), In Application of Super Absorbent Polymers (SAP) in Concrete Construction: State-of-the-Art Report Prepared by Technical Committee 225-SAP, Springer, Netherlands, 13-19, 2011.
  33. Kalinowski M., Woyciechowski P., and Sokołowska J., Effect of Mechanically-Induced Fragmentation of Polyacrylic Superabsorbent Polymer (SAP) Hydrogel on the Properties of Cement Composites,  Build. Mater.263, 120135, 2020.
  34. Venkatachalam D. and Kaliappa S., Superabsorbent Polymers: A State-of-Art Review on their Classification, Synthesis, Physicochemical Properties, and Applications,  Chem. Eng.39, 127-171, 2023.
  35. Lim H.L., Mazlan S.N.A., Ghazali S., Abd Rahim S., and Jamari S.S., Investigation on the Water Absorbency, Chemical and Thermal Properties of Superabsorbent Poly(acrylic acid-co-acrylamide)/Spent Coffee Ground Composite, In IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 052021, 2020.
  36. Zhang M., Zhang S., Chen Z., Wang M., Cao J., and Wang R., Preparation and Characterization of Superabsorbent Polymers Based on Sawdust, Polymers11, 1891, 2019.
  37. Zhao C., Zhang L., Zhang Q., Wang J., Wang S., Zhang M., and Liu Z., The Effects of Bio-Based Superabsorbent Polymers on the Water/Nutrient Retention Characteristics and Agricultural Productivity of a Saline Soil from the Yellow River Basin, China.  Water Manag.261, 107388, 2022.
  38. Kim J.S., Kim D.H., and Lee Y.S., The Influence of Monomer Composition and Surface-Crosslinking Condition on Biodegradation and Gel Strength of Super Absorbent Polymer, Polymers13, 663, 2021.
  39. Hossain L., Ledesma R.M.B., Tanner J., and Garnier G., Effect of Crosslinking on Nanocellulose Superabsorbent Biodegradability,  Polym. Technol. Appl.3, 100199, 2022.