زیست نرم کننده ها: مسیری به سوی مهندسی پلیمر پایدار

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر (پلی‌تکنیک تهران)، تهران، ایران

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

10.22063/basparesh.2024.3674.1705

چکیده

نرم کننده ها به عنوان یکی از اجزای کلیدی در صنعت پلیمر، نقش اساسی در بهبود خواص مکانیکی و گرمایی پلیمرهای سخت و افزایش فراورش پذیری آن ها دارند. در این مقاله، سازوکارهای شیمیایی نرم کننده ها، به ویژه دی اکتیل فتالات (DOP) و اثر آن ها بر انعطاف پذیری، کشش و دوام پلیمرها بررسی شده است. استفاده از نرم کننده ها باعث کاهش شکنندگی پلیمرها شده و کاربردهای صنعتی
گسترده تری برای آن ها فراهم می آورد. بااین حال، نرم کننده های سنتزی مانند فتالات ها به دلیل سمیت بالقوه و ماندگاری طولانی مدت در محیط، نگرانی های زیست محیطی و بهداشتی درخور توجهی به همراه دارند. در پاسخ به این مشکلات، زیست نرم کننده ها می پردازد که از منابع تجدیدپذیر تولید می شوند و به عنوان جایگزین های پایدارتر درنظر گرفته می شوند. زیست نرم کننده ها از نظر رقابت
با نرم کننده های سنتی و کاهش خطرهای زیست محیطی تحلیل شده اند. همچنین در این مقاله به چارچوب های نظارتی اشاره شده است که محدودیت های بیشتری برای مواد مضر مانند فتالات ها وضع کرده اند و استفاده از نرم کننده های زیست تخریب پذیر، نظیر روغن های گیاهی را تشویق می کنند. هرچند این مواد از نظر مقررات مناسب هستند و ویژگی های مطلوب پلیمرها را حفظ می کنند، اما چالش هایی مانند هزینه-اثربخشی و مقیاس پذیری صنعتی آن ها هنوز به طور کامل حل نشده است. در مقالة حاضر، پیشرفت های اخیر در فناوری نرم کننده ها مرور شده و بر ضرورت پژوهش و توسعه بیشتر برای بهینه سازی فرمولبندی های این مواد تأکید دارد. همچنین نشان داده می شود، دستیابی به تعادل میان عملکرد فنی، ایمنی زیست محیطی و الزامات نظارتی، راه را برای نوآوری های سبزتر و کارآمدتر در کاربردهای صنعتی هموار می سازد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bioplasticizers: A Path Towards Sustainable Polymer Engineering

نویسندگان [English]

  • Mohammad Reza Zamani Farahani 1
  • Ezzatollah Joudaki 2
1 Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
2 Department of Chemical Engineering, Faculty of Technology and Engineering, Arak University, Arak, Iran
چکیده [English]

Plasticizers, as one of the key components in the polymer industry, play a fundamental role in improving the mechanical and thermal properties of rigid polymers and improving their processability. In this paper, the chemical mechanisms of plasticizers, especially dioctyl phthalate (DOP), and their effects on the flexibility, elasticity, and durability of polymers
are reviewed. The use of plasticizers reduces the fragility of polymers and provides them with wider industrial applications. However, synthetic plasticizers such as phthalates have significant environmental and health concerns due to their potential toxicity and long-term persistence in the ecosystems. In response to these problems, bioplasticizers, which are derived from renewable resources and are considered as more sustainable alternatives, are being developed. Bioplasticizers are assessed based on their performance in comparison to traditional plasticizers and their potential to mitigate environmental risks. This article also highlights regulatory frameworks that have imposed greater restrictions on harmful substances such as phthalates and encourage the use of biodegradable plasticizers, such as vegetable oils. While bioplasticizers comply with regulatory standards and retain the beneficial properties of polymers, challenges related to cost-effectiveness and industrial scalability remain unresolved. This article reviews recent advances in plasticizer technology and emphasizes the need for further research and development to optimize the formulations of these materials. It is also shown that achieving a balance between technical performance, environmental safety, and regulatory requirements paves the way for greener and more efficient innovations in industrial applications.

کلیدواژه‌ها [English]

  • Plasticizer technology
  • Bioplasticizers
  • Dioctyl phthalate
  • flexibility
  • Sustainable polymer engineering
  1. Thakur R., Pristijono P., Scarlett C.J., Bowyer M., Singh S.P., and Vuong Q.V., Starch-Based Films: Major Factors Affecting their Properties, Int. J. Biol. Macromol., 132, 1079-1089, 2019.
  2. Tan S.X., Andriyana A., Ong H.C., Lim S., Pang Y.L., and Ngoh G.C., A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication, Polymers, 14, 664, 2022.
  3. Islam H.B.M.Z., Susan M.A.B.H., and Bin Imran A., Effects of Plasticizers and Clays on the Physical, Chemical, Mechanical, Thermal, and Morphological Properties of Potato Starch-Based Nanocomposite Films, ACS Omega, 5, 17543-17552, 2020.
  1. Shahidi F. and Hossain A., Preservation of Aquatic Food Using Edible Films and Coatings Containing Essential Oils: A Review, Crit. Rev. Food Sci. Nutr., 62, 66-105, 2022.
  2. Godwin A.D., Plasticizers, In Applied Plastics Engineering Handbook, Kutz M. (Ed.), 2nd ed., William Andrew, 533-553, 2017.
  3. Arfat Y.A., Plasticizers for Biopolymer Films, In Glass Transition and Phase Transitions in Food and Biological Materials, 1st ed., Blackwell-Wiley, 159-182, 2017.
  4. Abotbina W., Sapuan S.M., Sultan M.T.H., Alkbir M.F.M., and Ilyas R.A., Development and Characterization of Cornstarch-Based Bioplastics Packaging Film Using a Combination of Different Plasticizers, Polymers, 13, 3487, 2021.
  5. Paraskar P.M., Prabhudesai M.S., Hatkar V.M., and Kulkarni R.D., Vegetable Oil-Based Polyurethane Coatings–A Sustainable Approach: A Review, Prog. Org. Coatings, 156, 106267, 2021.
  6. Di Michele A., Gutiérrez C.L.P., Pagano C., Beccari T., Ceccarini M.R., Luzi F., Puglia D. et al., Formulation and Characterization of Sustainable Bioadhesive Films for Wound Treatment Based on Barley Β-Glucan Extract Obtained Using the High Power Ultrasonic Technique, Int. J. Pharm., 638, 122925, 2023.
  7. Montilla-Buitrago C.E., Gómez-López R.A., Solanilla-Duque J.F., Serna-Cock L., and Villada-Castillo H.S., Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion-Obtained Thermoplastic Starch: A Review, Starch-Stärke, 73, 2100060, 2021.
  8. Zhang Z., Jiang P., Liu D., Feng S., Zhang P., Wang Y., and Fu J., Research Progress of Novel Bio-Based Plasticizers and Their Applications in Poly(vinyl chloride), J. Mater. Sci., 56, 10155-10182, 2021.
  9. Bodaghi A., An Overview on the Recent Developments in Reactive Plasticizers in Polymers, Polym. Adv. Technol., 31, 355-367, 2020.
  10. Perito E.D., Guerra N.B., Giovanela M., Machado G., and da Silva Crespo J., Chemical, Thermal and Mechanical Evaluation of Poly(vinyl chloride) Plastisol with Different Plasticizers, J. Elast. Plast., 54, 1277-1294, 2022.
  11. Dong Y., Li Y., Ma Z., Rao Z., Zheng X., Tang K., and Liu J., Effect of Polyol Plasticizers on Properties and Microstructure of Soluble Soybean Polysaccharide Edible Films, Food Packag. Shelf Life, 35, 101023, 2023.
  12. Kandasamy S., Yoo J., Yun J., Kang H.B., Seol K.H., Kim H.W., and Ham J.S., Application of Whey Protein-Based Edible Films and Coatings in Food Industries: An Updated Overview, Coatings, 11, 1056, 2021.
  13. Yuan J. and Cheng B., A Strategy for Nonmigrating Highly Plasticized PVC, Sci. Rep., 7, 9270, 2017.
  14. Dalagnol R.D., Francisquetti E.L., and Santana R.M.C., Influence of Alternative Polymeric Plasticizer to DOP in Thermal and Dynamic-Mechanical Properties of PVC, Matéria (Rio Janeiro), 27, e13183, 2022.
  15. Yang S.L., Wu Z.H., Meng B., and Yang W., The Effects of Dioctyl Phthalate Plasticization on the Morphology and Thermal, Mechanical, and Rheological Properties of Chemical Crosslinked Polylactide, J. Polym. Sci. Part B: Polym. Phys., 47, 1136-1145, 2009.
  16. Luo Y.M., Guo H.Y., Wang Z.J., and Liu Z.R., Effects of Dioctyl Phthalate on Performance of Asphalt Sealant, Adv. Mater. Sci. Eng., 5385586, 2022.
  17. Majeed T., Dar A.H., Pandey V.K., Dash K.K., Srivastava S., Shams R., Jeevarathinam G. et al., Role of Additives in Starch-Based Edible Films and Coating: A Review with Current Knowledge, Prog. Org. Coat., 181, 107597, 2023.
  18. Moeini A., Germann N., Malinconico M., and Santagata G., Formulation of Secondary Compounds as Additives of Biopolymer-Based Food Packaging: A Review, Trends Food Sci. Technol., 114, 342-354, 2021.
  19. Wang J., Du Z., and Lian T., Extrusion–Calendering Process of Single-Polymer Composites Based on Polyethylene, Polym. Eng. Sci., 58, 2156-2165, 2018.
  20. Nešić A., Cabrera-Barjas G., Dimitrijević-Branković S., Davidović S., Radovanović N., and Delattre C., Prospect of Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, 25, 135, 2019.
  21. Cazón P., Velazquez G., Ramírez J.A., and Vázquez M., Polysaccharide-Based Films and Coatings for Food Packaging: A Review, Food Hydrocoll., 68, 136-148, 2017.
  22. Bakry N.F., Isa M.I.N., and Sarbon N.M., Effect of Sorbitol atDifferent Concentrations on the Functional Properties of Gelatin/Carboxymethyl Cellulose (CMC)/Chitosan Composite Films, Int. Food Res. J., 24, 2017.
  23. Fu Q., Long Y., Gao Y., Ling Y., Qian H., and Wang F., Synthesis and Properties of Castor Oil-Based Plasticizers, RSC Adv., 9, 10049-10057, 2019.
  24. Yang D., Peng X., Zhong L., Cao X., Chen W., and Zhang X., “Green” Films from Renewable Resources: Properties of Epoxidized Soybean Oil Plasticized Ethyl Cellulose Films, Carbohydr. Polym., 103, 198-206, 2014.
  25. Waskiewicz S., Langer E., Tannenberg M., Dziendzioł P., and Jurczyk S., Synthesis and Study of Properties of New Oligoesters Based on Soybean Oil as Potential Poly(vinyl chloride) Plasticizers, J. Appl. Polym. Sci., 141, e54865, 2024.
  26. Khalil H.A., Tehrani M., Davoudpour Y., Bhat A.H., Jawaid M., and Hassan A., Natural Fiber Reinforced Poly(vinyl chloride) Composites: A Review, J. Reinf. Plast. Compos., 32, 330-356, 2013.
  27. Teixeira S.C., Silva R.R.A., de Oliveira T.V., Stringheta P.C., Pinto M.R.M.R., and de F.F. Soares N., Glycerol and Triethyl Citrate Plasticizer Effects on Molecular, Thermal, Mechanical, and Barrier Properties of Cellulose Acetate Films, Food Biosci., 42, 101202, 2021.
  28. Aguilar J.M., Bengoechea C., Pérez E., and Guerrero A., Effect of Different Polyols as Plasticizers in Soy-Based Bioplastics, Ind. Crops Prod., 153, 112522, 2020.
  29. Chen J., Liu Z., Li K., Huang J., Nie X., and Zhou Y., Synthesis and Application of a Natural Plasticizer Based on Cardanol for Poly(vinyl chloride), J. Appl. Polym. Sci., 132, 2015.
  30. Lim H. and Hoag S.W., Plasticizer Effects on Physical–Mechanical Properties of Solvent Cast Soluplus® Films, AAPS PharmSciTech, 14, 903-910, 2013.
  31. Özeren H.D., Wei X.F., Nilsson F., Olsson R.T., and Hedenqvist M.S., Role of Hydrogen Bonding in Wheat Gluten Protein Systems Plasticized with Glycerol and Water, Polymer, 232, 124149, 2021.
  32. Langer E., Bortel K., Lenartowicz-Klik M., and Waskiewicz S., Plasticizers Derived from Post-consumer PET: ResearchTrends and Potential Applications, 1st ed., William Andrew, United States, 67-198, 2019.
  33. Islam H.B.M.Z., Susan M.A.B.H., and Imran A.B., High-Strength Potato Starch/Hectorite Clay-Based Nanocomposite Film: Synthesis and Characterization, Iran. Polym. J., 30, 513-521, 2021.
  34. Hassan B., Chatha S.A.S., Hussain A.I., Zia K.M., and Akhtar N., Recent Advances on Polysaccharides, Lipids and Protein- Based Edible Films and Coatings: A Review, Int. J. Biol. Macromol., 109, 1095-1107, 2018.
  1. Sazali N., Salleh W.N.W., and Ismail A.F., Polymeric Membrane for CO2/CH2 Separation, in Polymeric Membranes for Water Purification and Gas Separation, Materials Research Foundations, Millersville, Pennsylvania, 113, 203-242, 2021.
  2. Chen H., Wang J., Cheng Y., Wang C., Liu H., Bian H., Pan Y. et al., Application of Protein-Based Films and Coatings for Food Packaging: A Review, Polymers, 11, 2039, 2019.
  3. Baidurah S., Methods of Analyses for Biodegradable Polymers: A Review, Polymers, 14, 4928, 2022.
  4. Samir A., Ashour F.H., Hakim A.A.A., and Bassyouni M., Recent Advances in Biodegradable Polymers for Sustainable Applications, Npj Mater. Degrad., 6, 68, 2022.
  5. Hosney H., Nadiem B., Ashour I., Mustafa I., and El-Shibiny A., Epoxidized Vegetable Oil and Bio-Based Materials as PVC Plasticizer, J. Appl. Polym. Sci., 135, 46270, 2018.
  6. Yin B. and Hakkarainen M., Oligomeric Isosorbide Esters as Alternative Renewable Resource Plasticizers for PVC, J. Appl. Polym. Sci., 119, 2400-2407, 2011.
  7. Bocqué M., Voirin C., Lapinte V., Caillol S., and Robin J.J., Petro-Based and Bio-Based Plasticizers: Chemical Structures to Plasticizing Properties, J. Polym. Sci. Part A: Polym. Chem., 54, 11-33, 2016.
  8. Al-Natsheh M., Alawi M., Fayyad M., and Tarawneh I., Simultaneous GC–MS Determination of Eight Phthalates in Total and Migrated Portions of Plasticized Polymeric Toys and Childcare Articles, J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci., 985C, 103-109, 2015.
  9. Kocira A., Kozłowicz K., Panasiewicz K., Staniak M., Szpunar-Krok E., and Hortyńska P., Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality—A review, Agronomy, 11, 813, 2021.