استفاده ا ز لیگنین به عنوان پلیمر غیرفسیلی و تجدیدپذیر در تولید پلی یورتان

نوع مقاله : تالیفی

نویسندگان

1 گروه علوم و مهندسی کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه علوم و مهندسی کاغذ، دانشکده مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

10.22063/basparesh.2024.3685.1707

چکیده

لیگنین پلیمر آروماتیک طبیعی، غیرسمی و غنی از گروه های عاملی مختلف است که از چوب، ساقه درختان و گیاهان لیگنوسلولوزی به دست می آید. در حال حاضر، صنعت خمیر کاغذ سالانه مقدار زیادی لیگنین صنعتی تولید می کند که معمولا بدون ایجاد ارزش افزوده مناسب و فقط برای بازیابی انرژی سوزانده می شود. از راه های ایجاد ارزش افزوده برای لیگنین، استفاده از آن در تولید پلی یورتان هاست. پلی یورتان ها (PUs) کاربردهای گسترده ای دارند و از مهم ترین موادی هستند که در حال حاضر برپایة نفت و از منابع فسیلی به دست می آیند. بدین دلیل است که پژوهشگران و صنایع در توسعة مواد پلیمری به پلی یورتان های برپایة لیگنین به عنوان جایگزین پایداری برای انواع برپایة نفت توجه کرده اند. در این مقاله، برخی از انواع لیگنین های صنعتی تولیدی در فرایندهای خمیرسازی، روش های اصلی تولید پلی ال مایع از لیگنین جامد برای تولید پلی یورتان های زیست پایه، تفاوت پلی یورتان تولیدی برپایة لیگنین و برپایة نفت و ارزیابی فناوری و تحلیل چرخه عمر (LCA) محصول مرور شده است. پلی یورتان های تولیدشده از پلی ال های زیستی مانند لیگنین به چرخه اقتصادی کمک می کنند. استفاده از ایزوسیانات های متداول (سنتزشده با گاز بسیار سمی فسژن) در تولید پلی یورتان معضل مهم محیط زیستی محسوب می شود. همچنین، تولید پلی یورتان های غیرایزوسیاناتی (NIPU) برپایة لیگنین بحث می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Utilization of Lignin as Non-fossil and Renewable Polymer for Polyurethane Production

نویسندگان [English]

  • Rahman Abbasi 1
  • Sahab Hedjazi 2
1 Dept. of Paper Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources
2 Dept. of paper science and technology, Faculty of wood and paper engineering, Gorgan University of Agricultural Sciences and Natural Resources
چکیده [English]

Lignin is a natural, non-toxic, and aromatic polymer rich in various functional groups that is obtained from wood and stems of lignocellulosic trees and plants. Currently, the pulp industry produces a large amount of industrial lignin annually, which is usually burned only for energy recovery without creating appropriate added value. One of the ways
to create value for lignin is to use it in the production of polyurethanes. Polyurethanes (PUs) have wide applications and are one of the most important materials currently obtained from petroleum and fossil sources. For this reason, researchers and industries have paid attention to lignin-based polyurethanes as a sustainable alternative to petroleum-based polyurethanes in the development of polymer materials. In this article, some types of industrial lignins are being produced in pulping processes, the main methods of producing liquid polyol from solid lignin for the production of bio-based polyurethanes, the difference between lignin-based and petroleum-based polyurethane, and technology evaluation are examined. Polyurethanes produced from biological polyols such as lignin contribute to the economic
cycle. The use of common isocyanates (synthesized with highly toxic phosgene gas) in the production of polyurethane is considered an important environmental problem. Also, the production of non-isocyanate polyurethanes (NIPU) based on lignin is discussed.

کلیدواژه‌ها [English]

  • technical lignin
  • polyol
  • liquefaction
  • isocyanate-free polyurethanes
  • biomass
  1. Yu P., He H., Jiang, C., Jia Y.C., Wang D.Q., Yao X.J., Jia D.M., and Luo Y.F., Enhanced Oil Resistance and Mechanical Properties of Nitrile Butadiene Rubber/Lignin Composites Modified by Epoxy Resin, J. Appl. Polym. Sci., 133, 42922, 2016.
  2. Tribot A., Amer G., Alio M.A., de Baynast H., Delattre C., Pons A., Mathias J.D., Callois J.M., Vial C., Michaud P., and Dussap C.G., Wood-Lignin: Supply, Extraction Processes and Use as Bio-Based Material, Eur. Polym. J., 112, 228-240, 2019.
  3. Jia Z., Lu C., Zhou P., and Wang L., Preparation and Characterization of High Boiling Solvent Lignin-Based Polyurethane Film with Lignin as the Only Hydroxyl Group Provider, RSC Adv., 5, 53949-53955, 2015.
  4. Kai D., Tan M.J., Chee P.L., Chua Y.K., Yap Y.L., and Loh X.J., Towards Lignin-Based Functional Materials in a Sustainable World, Green Chem., 18, 1175–1200, 2016.
  5. Meng X., Crestini C., Ben H., Hao N., Pu Y., Ragauskas A.J., and Argyropoulos D.S., Determination of Hydroxyl Groups in Biorefinery Resources via Quantitative 31P NMR Spectroscopy, Nat. Protoc., 14, 2627–2647, 2019.
  6. Vieira F.R., Magina S., Evtuguin D.V., and Barros-Timmons A., Lignin as a Renewable Building Block for Sustainable Polyurethanes, Materials, 15, 6182, 2022.
  7. Alinejad M., Henry C., Nikafshar S., Gondaliya A., Bagheri S., Chen N., Singh S.K., Hodge D.B., and Nejad M., Lignin-Based Polyurethanes: Opportunities for Bio-Based Foams, Elastomers, Coatings and Adhesives, Polymers, 11, 1202, 2019.
  8. Dessbesell L., Yuan Z., Hamilton S., Leitch M., Pulkki R., and Xu C., Bio-Based Polymers Production in a Kraft Lignin Biorefinery: Techno-Economic Assessment, Biofuel Bioprod. Bior., 12, 239-250, 2018.
  9. Aniceto J.P., Portugal I., and Silva C.M., Biomass-Based Polyols through Oxypropylation Reaction, Chem Sus Chem., 5, 1358-1368, 2012.
  10. Vieira F.R., Barros-Timmons A., Evtuguin D.V., and Pinto P.C., Effect of Different Catalysts on the Oxyalkylation of Eucalyptus Lignoboost® Kraft Lignin, Holzforschung, 74, 567-576, 2020.
  11. Jin Y., Ruan X., Cheng X., and Lü Q., Liquefaction of Lignin by Polyethylene Glycol and Glycerol, Bioresour. Technol., 102, 3581-3583, 2011.
  12. Jasiukaityte-Grojzdek E., Kunaver M., and Crestini C., Lignin Structural Changes During Liquefaction in Acidified Ethylene Glycol, J. Wood Chem. Technol., 32, 342–360, 2012.
  13. Ionescu M., The General Characteristics of Oligo-Polyols, In Chemistry and Technology of Polyols for Polyurethanes, Rapra Technology, UK, 31–49, 2005.
  14. Szycher M., Szycher’s Handbook of Polyurethanes, CRC, USA, 2006.
  15. Cateto C.A., Barreiro M.F., Brochier-Salon M.C., Thielemans W., and Belgacem M.N., Lignins as Macromonomers for Polyurethane Synthesis: A Comparative Study on Hydroxyl Group Determination, J. Appl. Polym. Sci., 109, 3008–3017, 2008.
  16. Upton B.M. and Kasko A.M., Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective, Chem. Rev., 116, 2275–2306, 2016.
  17. Li H., Liang Y., Li P., and He C., Conversion of Biomass Lignin to High-Value Polyurethane: A Review, J. Bioresour. Bioprod., 5, 163-179, 2020.
  18. Xu C. and Ferdosian F., Lignin-Based Polyurethane (PU) Resins and Foams, In Conversion of Lignin into Bio-Based Chemicals and Materials, Springer, Germany, 133–156, 2017.
  19. Llovera L., Benjelloun-Mlayah B., and Delmas M., Organic Acid Lignin-Based Polyurethane Films: Synthesis Parameter Optimization, Bio Resources, 11, 6320–6334, 2016.
  20. Bolognesi C., Baur X., Marczynski B., Norppa H., Sepai O., and Sabbioni G., Carcinogenic Risk of Toluene Diisocyanate and 4,40-Methylenediphenyl Diisocyanate: Epidemiological and Experimental Evidence, Crit. Rev. Toxicol., 31, 737–772, 2001.
  21. Leykin A., Figovsky O., and Shapovalov L., Non-isocyanate Polyurethanes—Yesterday, Today and Conscious, Int. Sci. J. Altern. Energy Ecol., 3-4, 95–108, 2016.
  22. Maisonneuve L., Lamarzelle O., Rix E., Grau E., and Cramail H., Isocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s, Chem. Rev., 115, 12407–12439, 2015.
  23. Cornille A., Auvergne R., Figovsky O., Boutevin B., and Caillol S., A Perspective Approach to Sustainable Routes for Nonisocyanate Polyurethanes, Eur. Polym. J., 87, 535–552, 2017.
  24. Datta J. and Włoch M., Progress in Non-isocyanate Polyurethanes Synthesized from Cyclic Carbonate Intermediates and Di- or Polyamines in the Context of Structure–Properties Relationship and from an Environmental Point of View, Polym. Bull., 73, 1459–1496, 2015.
  1. Farhadian A., Gol Afshani M.B., Babaei Miyardan A., Nabid M.R., and Safari N., A Facile and Green Route for Conversion of Bifunctional Epoxide and Vegetable Oils to Cyclic Carbonate: A Green Route to CO2 Fixation, Chemistry Select, 2, 1431–1435, 2017.
  2. Schmidt S., Göppert N.E., Bruchmann B., and Mülhaupt R., Liquid Sorbitol Ether Carbonate as Intermediate for Rigid and Segmented Non-isocyanate Polyhydroxyurethane Thermosets, Eur. Polym. J., 94, 136–142, 2017.
  3. Poussard L., Mariage J., Grignard B., Detrembleur C., Je C., Calberg C., Heinrichs B. et al., Non-isocyanate Polyurethanesfrom Carbonated Soybean Oil Using Monomeric or Oligomeric Diamines to Achieve Thermosets or Thermoplastics, Macromolecules, 49, 2162–2171, 2016.
  4. Fache M., Darroman E., Besse V., Auvergne R., Caillol S., and Boutevin B., Vanillin, A Promising Biobased Building-Block for Monomer Synthesis, Green Chem., 16, 1987–1998, 2014.
  5. Azadi P., Inderwildi O.R., Farnood R., and King D.A., Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review, Renew. Sustain. Energy Rev., 21, 506–523, 2013.
  6. Lee A. and Deng Y., Green Polyurethane from Lignin and Soybean Oil through Non-isocyanate Reactions, Eur. Polym. J., 63, 67–73, 2015.
  7. Salanti A., Zoia L., Mauri M., and Orlandi M., Utilization of Cyclocarbonated Lignin as a Bio-Based Cross-linker for the Preparation of Poly(hydroxy urethane)s, RSC Adv., 7, 25054– 25065, 2017.
  8. Polyurethane Market Size, https://www.fortunebusinessinsights.com/industry-reports/polyurethane-pumarket-101801, available in 14 June 2022.
  9. Market of Bio-Based Polyurethane, https://www.grandviewresearch.com/industry-analysis/bio-basedpolyurethane-industry,Available in 14 June 2022.
  10. Maiorana A., Venkata S.N.M., and Viswanathan G., Alkoxylated Lignin for Polyurethane Applications, US Pat. 0144595,2019.
  11. Xu C., Mahmoood N., Yuan Z., Ferdosian F., Li B., and Paleologou M., Depolymerization of Lignin for the Production of Bio-based Polyols and Phenols and Lignin-Based PF/PU/Epoxy Resins/Foams, WO Pat. 2018205020A1, 2018.
  12. Pilla S. and Sternberg J., Bio-Based Non-Isocyanate Poly(urethane-amide) Thermoplastic Polymers, US Pat.20220017696A1, 2022.
  13. Jasiukaitytė E., Kunaver M., and Crestini C., Lignin Behaviour During Wood Liquefaction-Characterization by Quantitative 31P, 13C NMR and Size-Exclusion Chromatography, Catalysis Today, 156, 23-30, 2010.