مروری بر خواص رئولوژیکی و کاربردهای هیدروژل‌های برپایه کیتوسان

نوع مقاله : سایر

نویسندگان

1 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر، تهران، ایران

2 دانشکده مهندسی نساجی، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

3 عضو هیئت علمی پژوهشگاه پلیمر

چکیده

هیدروژل ها موادی متورم شونده در آب و متخلخل با منشأ پلیمری هستند. آن ها شبکه های به هم متصل از یک یا چند نوع پلیمر با ظرفیت جذب آب زیاد هستند که قابلیت حمل داروها و پروتئین های کوچک مولکول را دارند. هیدروژل ها به دلیل کاربردهای صنعتی و کارایی برجسته آن ها مورد توجه بسیاری قرار گرفته اند. هیدروژل های برپایه کیتوسان نیز در حوزه های مختلف ازجمله مهندسی بافت،
رهایش دارو، التیام و بهبود زخم استفاده می شوند و کاربردهای صنعتی گسترده ای دارند، از این رو توجه زیادی به این دسته از هیدروژل ها جلب شده است. تنوع در ساخت و ماهیت ماده اولیه به عنوان واکنشگر موجب تولید هیدروژل های مختلف با ویژگی های مکانیکی و رئولوژیکی متفاوت شده است. بنابراین، درک رفتار رئولوژیکی و رابطه ساختار شیمیایی با ویژگی های ایجادشده، از اهمیت بسزایی برخوردار است. کیتوسان به دلیل ویژگی هایی چون زیست سازگاری، زیست تخریب پذیری، خاصیت ضدباکتری و غیرسمی بودن کاربردهای گسترده ای در زمینه های دارویی، پزشکی، آرایشی و بهداشتی، کشاورزی، زیست حسگرها و صنایع غذایی دارد. در این مقاله تلاش شده است، مطالعات اخیر درباره رئولوژی هیدروژل های کیتوسانی و کاربردهای آن ها ارائه شود. با توجه به اهمیت رئولوژی در موادی از قبیل هیدروژل ها، سعی شده است تا ویژگی ها و کاربردهای این دسته از هیدروژل ها به طور جامع مرور شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Rheological Properties and Application of Chitosan-Based Hydrogels: A Review

نویسندگان [English]

  • Faezeh Rezaei bagha 1
  • Niloofar Beyrami 1
  • Zeinab Danesh Zand 2
  • Ismaeil Ghasemi 3
1 Department of Textile Engineering Amirkabir University of Technology, Tehran, Iran
2 Department of Textile Engineering Amirkabir University of Technology, Tehran, Iran
3 academic staff in IPPI
چکیده [English]

Hydrogels are a water-swollen and porous materials with polymeric origin. They are interconnected networks of one or more types of polymers with high water absorption capacity that can carry drugs and small molecule proteins. Due to their wide industrial applications and outstanding efficiency, they have attracted considerable attention. Chitosan-based hydrogels find applications in tissue engineering, drug release, wound healing and improvement, and due to their diverse industrial applications, they have gained significant interest. The variety in construction and the nature of the primary reactant have led to the production of different hydrogels with various mechanical and rheological properties. Therefore, understanding the rheological behavior and the relationship between the chemical structure and the resulting properties is very important. Due to its biocompatibility, biodegradability, antibacterial properties and non-toxicity, chitosan
has a wide range of applications in the fields of pharmaceuticals, medicine, cosmetics, health care, agriculture, biosensors, and food industries. In this article, recent studies on the rheology of chitosan hydrogels and the applications of chitosan-containing hydrogels are presented. Considering the importance of rheology in materials such as hydrogels, an attempt has been made to comprehensively review of the properties and applications of this category of hydrogels.

کلیدواژه‌ها [English]

  • chitosan
  • hydrogel
  • rheology
  • chitosan blend
  • application
  1. Ziaee F., Determination of the Degree of Deacetylation in Chitosan and its Salts by Proton Nuclear Magnetic Resonance Spectroscopy, Polymerization (Persian), 5, 27-32, 2015.
  2. Yang J. and Shen M., Advanced Applications of Chitosan-Based Hydrogels: From Biosensors to Intelligent Food Packaging

System, Trends Food Sci. Technol., 110, 822–832, 2021.

  1. El-hefian E. and Yahaya A.H., Rheological Study of Chitosan and Its Blends: An Overview, Maejo Int. J. Sci. Technol., 4, 210–220, 2010.
  2. Taghizadeh S.M. and Sadegi M., Chitosan and Its Microparticles as Carriers in Drug Delivery Systema: An Overview, Polymerization (Persion), 4, 4-19, 2016.
  3. Sahragard Dehkori H.A., Afra E., and Saraeian A., A Brief Review on Important in Antibacterial and Strength Properties of Paper Using Carboxymethyl Cellulose/Chitosan Composite, Polymerization (Persion), 4, 113-123, 2016.
  4. Talebi H., Ashenai Ghasemi F., and Ashori A., Effect of Nanoparticles on the Mechanical Properties of Chitosan-Based Bicomponent, Polymerization (Persion), 4, 54-65, 2020.
  5. Ahmed B.M., Hydrogel: Preparation, Characterization, and Applications: A Review, J. Adv. Res., 6, 105–121, 2015.
  6. Maghsoodnia A., Hydrogel-based Composites: A Review, Polymerization (Persion), 6, 94-102, 2016.
  7. Stojkov G. and Niyazov Z., Relationship Between Structure and Rheology of Hydrogels for Various Applications, Gels, 7, 4, 2021.
  8. Gong J., The Rheological and Physicochemical Properties of a Novel Thermosensitive Hydrogel Based on Konjac Glucomannan/Gum Tragacanth, LWT, 100, 271–277, 2019.
  9. Burak J. and Grela K.P., Impact of Sterilisation Conditions on the Rheological Properties of Thermoresponsive Pluronic F-127-Based Gels for the Ophthalmic Use, Acta Pol. Pharm.- Drug Res., 75, 471–481, 2018.
  10. Mendoza L. and Batchelor W., Gelation Mechanism of Cellulose Nanofibre Gels: A Colloids and Interfacial Perspective, J. Colloid Interface. Sci., 509, 39–46, 2018.
  11. Bertasa M., Agar Gel Strength: A Correlation Study Between Chemical Composition and Rheological Properties, Eur. Polym. J., 22, 123, 2020.
  12. Baby D.K., Rheology of Hydrogels, in Rheology of Polymer Blends and Nanocomposites: Theory, Modelling and Applications, Elsevier, 193–204, 2019.
  13. Ahmadi F. and Oveisi Z., Chitosan Based Hydrogels: Characteristics and Pharmaceutical Applications, Res. Pharm. Sci., 10, 1–16, 2015.
  14. Khoee S. and Kardani M., Hydrogels as Controlled Drug Delivery Carriers, Polymerization (Persion), 4, 16-27, 2013.
  15. Zhang J. and Xie R., Rapid pH/Temperature-Responsive Cationic Hydrogels with Dual Stimuli-Sensitive Grafted Side Chains, Polymer (Guildf), 50, 2516–2525, 2009.
  16. Kadam A.T. and Jadhav R.L., Design and Evaluation of Modified Chitosan Based in Situ Gel for Ocular Drug Delivery, Int. J. Pharm. Pharm. Sci., 9, 87, 2017.
  17. Hwang J.K. and Shin H.H., Rheological Properties of Chitosan Solutions, Korea-Australia Rheology J., 12, 175–179, 2000.
  18. Martínez-Ruvalcaba A. and Chornet E., Dynamic Rheological Properties of Concentrated Chitosan Soltions, Appl. Rheol., 14, 140–147, 2004.
  19. Anchisi C. and Maccioni A.M., Physical Properties of Chitosan Dispersions in Glycolic Acid, Farmaco, 59, 557–561, 2004.
  20. Mironov A.V. and Vikhoreva G.A., Reasons for Unstable Viscous Properties of Chitosan Solutions in Acetic Acid, Polym. Sci.-Ser. B, 49, 15–17, 2007.
  21. El-Hefian E.A. and Elgannoudi E.S., Characterization of Chitosan in Acetic Acid: Rheological and Thermal Studies, Turkish J. Chem., 34, 47–56, 2010.
  22. Moura M.J. and Figueiredo M.M., Rheological Study of Genipin Cross-linked Chitosan Hydrogels, Biomacromolecules, 8, 12, 3823–3829, 2007.
  23. Xu L., Nonionic Polymer Cross-Linked Chitosan Hydrogel: Preparation and Bioevaluation, J. Biomater. Sci. Polym. Ed., 24, 1564–1574, 2013.
  24. Lin T.W. and hui Hsu S., Self-Healing Hydrogels and Cryogels from Biodegradable Polyurethane Nanoparticle Crosslinked Chitosan, Adv. Sci., 7, 3, 2020.
  25. Grandgirard J. and Poinsot D., Thermal and Rheological Behavior of Collagen Chitosan Blends, Entomol. Exp. Appl., 103, 239–248, 2002.
  26. Martínez-Ruvalcaba A., Viscoelastic Properties of Dispersed Chitosan/Xanthan Hydrogels, Carbohydr. Polym., 67, 586–595, 2007.
  27. Khunawattanakul W. and Puttipipatkhachorn S., Chitosan-Magnesium Aluminum Silicate Composite Dispersions: Characterization of Rheology, Flocculate Size and Zeta Potential, Int. J. Pharm., 351, 227–235, 2008.
  28. Hernández R. and Zamora-Mora V., Influence of Iron Oxide Nanoparticles on the Rheological Properties of Hybrid Chitosan Ferrogels, J. Colloid Interface Sci., 339, 53–59, 2009.
  29. Tamura H. and Furuike T., Biomedical Applications of Chitin Hydrogel Membranes and Scaffolds, Carbohydr. Polym., 84, 820–824, 2011.
  30. Xu T. and Xin M., Synthesis, Characteristic and Antibacterial Activity of N,N,N-Trimethyl Chitosan and Its Carboxymethyl Derivatives, Carbohydr. Polym., 81, 931–936, 2010.
  31. Ong S.Y. and Wu J., Development of a Chitosan-Based Wound Dressing with Improved Hemostatic and Antimicrobial Properties, Biomaterials, 29, 4323–4332, 2008.
  32. Park H. and Choi B., Injectable Chitosan Hyaluronic Acid Hydrogels for Cartilage Tissue Engineering, Acta Biomater., 9, 4779–4786, 2013.
  33. Giri T.K. and Thakur A., Modified Chitosan Hydrogels as Drug Delivery and Tissue Engineering Systems: Present Status and Applications, Acta Pharm. Sin. B, 2, 439–449, 2012.
  34. Yang J. and Chen J., pH-sensitive Interpenetrating Network Hydrogels Based on Chitosan Derivatives and Alginate for Oral Drug Delivery, Carbohydr. Polym., 92, 719–725, 2013.
  35. Ji C. and Khademhosseini A., Enhancing Cell Penetration and Proliferation in Chitosan Hydrogels for Tissue Engineering Applications, Biomaterials, 32, 9719–9729, 2011.
  36. Li X. and Katsanevakis E., Engineering Neural Stem Cell Fates with Hydrogel Design for Central Nervous System Regeneration, Prog. Polym. Sci., 37, 1105–1129, 2012.