مروری کلی بر مواد پلیمری به عنوان حفاظ تداخل الکترومغناطیسی

نوع مقاله : تالیفی

نویسندگان

1 گروه مهندسی پلیمر، دانشگاه صنعتی قم

2 گروه مهندسی پلیمر، دانشکده فنی و مهندسی، دانشگاه صنعتی قم

چکیده

امروزه مردم در محیط زندگی و کار خود در معرض تابش قرار می گیرند. تجهیزات و وسایل الکترونیکی با توسعه علم و فناوری الکترونیک به طور گسترده در زمینه های مختلف استفاده می شوند. به کارگیری بیش از حد وسایل الکترونیکی به مسائل جانبی ناخواسته و نامطلوب منجر می شود که نوعی آلودگی جدید به نام تداخل الکترومغناطیسی را ایجاد می کند. اگرچه فلزات سنتی و آلیاژهای آ ن ها می توانند به عنوان مواد حفاظ تداخل الکترومغناطیسی به خوبی عمل کنند، اما وزن سنگین، هزینه بری زیاد و همچنین مقاومت ضعیف دربرابر خوردگی کاربرد آ ن ها را در این زمینه محدود می کند. بنابراین، به تدریج توجه بیشتری به مواد حفاظ تداخل الکترومغناطیسی سبک وزن معطوف شده تا با روند تجهیزات الکترونیکی سبک وزن و بسیار یکپارچه مواجه شوند. مواد پلیمری و کامپوزیت های آ ن ها
به دلیل ویژگی هایی مانند وزن سبک، مقاومت دربرابر خوردگی خوب، خواص برتر الکتریکی، گرمایی، مکانیکی و مغناطیسی به عنوان مواد حفاظ تداخل الکترومغناطیسی استفاده شده اند. این مواد سبک وزن با عملکرد حفاظتی خوب، تداخل الکترومغناطیسی کاربردهای بالقوه بیشتری در ارتباطات، الکترونیک، هوافضا، نظامی و غیره پیدا خواهند کرد. در این مقاله پدیده تداخل الکترومغناطیسی و انواع حفاظ های کامپوزیتی پلیمری و میزان اثربخشی این حفاظ ها مرور شده اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of Polymeric Materials as Electromagnetic Interference Shielding

نویسندگان [English]

  • Mohammad Amin Zare 1
  • Mohsen Mohammadi 2
1 Department of Polymer Engineering, Qom University of Technology, Qom, Iran
2 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P.O. Box: 37195-1519, Qom, Iran
چکیده [English]

Today, people are exposed to radiation in their living and working environment. Electronic equipment and devices are widely used in various fields with the development of electronic science and technology. An excessive use of electronic devices leads to unwanted and undesirable byproduct, which is a novel kind of pollution called electromagnetic interference (EMI). Although traditional metals and their alloys can serve as good electromagnetic shielding materials, their heavy weight, high cost as well as poor corrosion resistance limit their application in this field. Therefore, lightweight
electromagnetic shielding materials are gradually attracting more and more attention to meet the trend of lightweight and highly integrated electronic equipment. Polymer material and their composites have been used as EMI shielding materials due to their characteristics like lightweight, good corrosion resistance, and superior electrical, thermal, mechanical and magnetic properties. These lightweight materials with good EMI shielding performance will find more potential applications in communications, electronics, aerospace, military, etc. In this article, the phenomenon of electromagnetic interference and the types of polymer composite shieldings and their shieldings effectiveness have been reviewed.

کلیدواژه‌ها [English]

  • Electromagnetic wave
  • Electromagnetic Interference Shielding
  • Lightweight Materials
  • Shielding Effectiveness
  • Polymer Matrix Composites
  1. Kondawar S.B. and Modak P.R., Theory of EMI Shielding, Materials for Potential EMI Shielding Applications, Elsevier, Amsterdam, 9-25, 2020.
  2. Yao Y., Jin S., Zou H., Li L., Ma X., Lv G., Gao F. et al., Polymer-Based Lightweight Materials for Electromagnetic Interference Shielding: A Review, J. Mater. Sci., 56, 6550-6580, 2021.
  3. Yang J., Liao X., Li J., He G., Zhang Y., Tang W., Wang G. et al., Lightweight and Flexible Silicone Rubber/MWCNTs/Fe3O4 Nanocomposite Foam for Efficient Electromagnetic Interference Shielding and Microwave Absorption, Compos. Sci. Technol., 181, 107670, 2019.
  4. Sathish Kumar K., Rengaraj R., Venkatakrishnan G.R., and Chandramohan A., Polymeric Materials for Electromagnetic Shielding: A Review, Mater. Today: Proc., 47, 4919-5508, 2021.
  5. Liu S., Qin S., Jiang Y., Song P., and Wang H., LightweightHigh-Performance Carbon-Polymer Nanocomposite for Electromagnetic Interference Shielding, Compos. A: Appl. Sci. Manuf., 145, 106376, 2021.
  6. Sun Y., Long N.J., Sidorov G., Fang J., Badcock R.A., and Jiang Z., Shielding Effect of (RE)Ba2Cu3O7-d-Coated Conductors on Eddy Current Loss of Adjacent Metal Layers under AC Magnetic Fields with Various Orientations, IEEE Trans. Appl. Supercond., 31, 3011390, 2020.
  7. Singh A.K., Shishkin A., Koppel T., and Gupta N., A Review of Porous Lightweight Composite Materials for Electromagnetic Interference Shielding, Compos. B: Eng., 149, 188-197, 2018.
  8. Morari C., Balan I., Pintea J., Chitanu E., and Iordache I., Electrical Conductivity and Electromagnetic Shielding Effectiveness of Silicone Rubber Filled with Ferrite and Graphite Powders, Prog. Electromagn. Res. M., 21, 93-104, 2011.
  9. Kumar R., Sahoo S., Joanni E., Singh R.K., Tan W.K., Kar K.K., and Matsuda A., Recent Progress on Carbon-Based Composite Material for Microwave Electromagnetic Interference Shielding, Carbon, 177, 304-331, 2021.
  10. Sankaran S., Deshmukh K., Ahamed M.B., and Khadheer Pasha S.K., Recent Advances in Electromagnetic Interference Shielding Properties of Metal and Carbon Filler Reinforced Flexible Polymer Composites: A Review, Compos. A: Appl. Sci. Manuf., 114, 49-71, 2018.
  11. Kim Y., Park S., and Seo Y., Enhanced X-Ray Shielding Ability of Polymer-Nonleaded Metal Composites by Multilayer Structuring, Ind. Eng. Chem. Res., 22, 54, 5968-5973, 2015.
  12. Yarahmadi E., Bahri N., and Didehban K., Polymer Composites as Electromagnetic Wave Absorbers, Polymerization (Persian), 6, 13-22, 2015.
  13. Hu X.-S. and Shen Y., Fabrication of Novel Polyaniline/Flowerlike Cooper Monosulfide Composites with Enhanced Electromagnetic Interference Shielding Effectiveness, J. Appl. Polym. Sci., 134, 45232, 2017.
  14. Lee J., Liu Y., Liu Y., Park S.-J., Park M., and Kim H.Y., Ultrahigh Electromagnetic Interference Shielding Performance of Lightweight, Flexible, and Highly Conductive Cooper-Clad Carbon Fiber Nonwoven Fabrics, J. Mater. Chem. C, 5, 7853-7861, 2017.
  15. Luo Z., Chen X.-H., Song K., Liu C.-Q., Dai Y., Zhao D., and Pan F.-S., Effect of Alloying Element on Electromagnetic Interference Shielding Effectiveness of Binary Magnesium Alloys, Acta Metall. Sin. (Engl. Lett.), 32, 817-824, 2019.
  16. Dou Z., Wu G., Huang X., Sun D., and Jiang L., Electromagnetic Shielding Effectiveness of Aluminum Alloy- Fly Ash Composites, Compos. A: Appl. Sci. Manuf., 38, 186-191, 2007.
  17. Kumar R., Kumari S., and Dhakate S.R., Nickel Nanoparticles Embedded in Carbon Foam for Improving Electromagnetic Shielding Effectiveness, Appl. Nanosci., 5, 553-561, 2015.
  18. Liu P.S. and Cui G., Characterization of The Electromagnetic Shielding Compressive Behavior of a Highly Porous Titanium Foam with Spherical Pores, J. Mater. Res., 30, 3510-3517, 2015.
  19. Ji K., Zhao H., Zhang J., Chen J., and Dai Z., Fabrication and Electromagnetic Interference Shielding Performance of Open-Cell Foam of a Cu-Ni Alloy Integrated with CNTs, Appl. Surf. Sci., 311, 351-356, 2014.
  20. Du S.G., Cui H.P., Yan J., and Wang M.-Q., Study of the Electromagnetic Shielding Efficiency of Ni-Cu-P Amorphous Alloy Film on The Surface of PVC, Adv. Mat. Res., 452, 101-105, 2012.
  21. Hamidinejad M., Zhao B., Zandieh A., Moghimian N., Filleter T., and Park C.B., Enhanced Electrical and Electromagnetic Interference Shielding Properties of Polymer-Graphene Nanoplatelet Composites Fabricated Via Supercritical-Fluid Treatment and Physical Foaming, ACS. Appl. Mater. Interfaces, 10, 30752-30761, 2018.
  22. Abbasi H., Antunes M., and Velasco J.I., Recent Advances in Carbon-Based Polymer Nanocomposites for Electromagnetic Interference Shielding, Prog. Mater. Sci., 103, 319-373, 2019.
  23. Wu Y., Wang Z., Liu X., Shen X., Zheng Q., Xue Q., and Kim J.-K., Ultralight Graphene Foam/Conductive Polymer Composite for Exceptional, Electromagnetic Interference Shielding, ACS. Appl. Mater. Interfaces, 9, 9059-9069, 2017.
  24. Ghosh S., Remanan S., Mondal S., Ganguly S., Das P., Singha N., and Das N.C., An Approach to Prepare Mechanically Robust Full IPN Strengthened Conductive Cotton Fabric for High Strain Tolerant Electromagnetic Interference Shielding, Chem. Eng. J., 364, 138-154, 2018.
  25. Shen B., Li Y., Zhai W., and Zheng W., Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding, ACS. Appl. Mater. Interfaces, 8, 12, 8050-8057, 2016.
  26. Jin X., Wang J., Dai L., Liu X., Li L., Yang Y., Cao Y. et al., Flame-Retardant Poly(vinyl alcohol)/MXene Multilayered Films without Standing Electromagnetic Interference Shielding and Thermal Conductive Performances, Chem. Eng. J., 380, 122475, 2020.
  27. Barathi Dassan E.G., Anjang A., Zainol Abidin M.S., and Akil H.M., Carbon Nanotube-Reinforced Polymer Composite for Electromagnetic Interference Application: A Review, Nanotechnol. Rev., 9, 768-788, 2020.
  28. Jaroszewski M., Thomas S., and Rane A.V., Advanced Material for Electromagnetic Shielding: Fundamentals, Properties, and Applications, John Wiley & Sons, New York, 177-217, 2018.
  29. Shahzad F., Alhabeb M., Hatter C.B., Anasori B., Hong S.M., Koo C.M., and Gogotsi Y., Electromagnetic Interference Shielding With 2D Transition Metal Carbides (MXenes), Science, 353, 1137-1140, 2016.
  30. Liang C., Song P., Qiu H., Huangfu Y., Lu Y., Wang L., Kong J. et al., Superior Electromagnetic Interference Shielding Performances of Epoxy Composites by Introducing Highly Aligned Reduced Graphene Oxide Films, Compos. A: Appl. Sci. Manuf., 124, 105512, 2019.