مروری بر نقاط کوانتومی کربن و کاربردهای بالقوه آن ها به عنوان پرکننده در نانوکامپوزیت های لاستیکی

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی شریف، تهران، ایران

2 استاد، دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

چکیده

نقاط کوانتومی کربن، زیرمجموعه خاصی از نانوذرات کربنی با اندازه حدود 10 nm هستند. از خواص منحصربه فرد آ ن ها می توان به سمیت کم، بی اثری شیمیایی، زیست سازگاری عالی و رفتار درخشایی تنظیم پذیر با اصلاح سطح اشاره کرد. منابع خام متعددی برای تهیه نقاط کوانتومی کربن در طبیعت وجود دارد که هر یک اثر متفاوتی بر خواص این ذرات دارند. تاکنون برای تهیه این ذرات روش های
متعددی ازجمله برسایش لیزری، تابش ریزموج، واکنش گرمابی، اکسایش الکتروشیمیایی، بازروانی و فراصوت دهی به کار گرفته شده اند. نقاط کوانتومی کربن به دلیل اندازه ذرات کوچک دارای خواص فلوئورسان تنظیم پذیر قوی هستند. از این ذرات می توان در کاربردهای متنوع مانند نورکاتالیزگر، حسگر یونی، تصویربرداری زیستی، تشخیص فلزات سنگین، تصفیه برجذبی، ابرخازن، ساخت غشا و تصفیه آلودگی آب بهره برد. در سال های اخیر، پژوهش ها در زمینه استفاده از نقاط کوانتومی کربن در مواد پلیمری، به ویژه مواد کامپوزیتی تقویت شده با این نانوذرات، مورد توجه قرار گرفته اند. این مسئله به دلیل خواص منحصربه فرد نقاط کوانتومی کربن از قبیل تجدیدپذیری، پایداری، خواص مکانیکی زیاد، سبکی و ارزانی آن هاست. هدف از این مقاله، بررسی خواص فیزیکی، شیمیایی و پایداری نقاط کوانتومی کربن و معرفی انواع مواد اولیه، روش های ساخت و کاربردهای آن ها، به ویژه در صنعت لاستیک است. درنهایت، پیشرفت های اخیر در زمینه استفاده از نقاط کوانتومی کربن در محصولات لاستیکی و اثر آنها بر خواص مکانیکی و دینامیکی مرور می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on Carbon Quantum Dots and Their Potential Applications as Filler in Rubber Nanocomposites

نویسندگان [English]

  • mehdi ghanbari adivi 1
  • akbar shojaei 2
1 Chemical Engineering Faculty، Sharif University of Technology،Tehran، Iran
2 Professor، Faculty of Chemical and Petroleum Engineering، Sharif University of Technology، Tehran، Iran
چکیده [English]

Carbon quantum dots (CQDs) are a special subset of carbon nanoparticles with average dimensions about 10 nm. Their unique properties include low toxicity, chemical inertness, excellent biocompatibility, and tunable luminescence behavior by surface modification. There are several sources for synthesis of CQDs in nature, each of which has different effects on the properties of these particles. So far, several methods have been used to synthesize CQDs including laser ablation, microwave radiation, hydrothermal reaction, electrochemical oxidation, reflux method, and ultrasonication. Due to the small particle size, CQDs have strong tunable fluorescent properties. The usage of these particles has been examined in various fields such as photocatalysis, ion sensor, biological imaging, heavy metal detection, adsorption treatment, supercapacitor, membrane fabrication, and water pollution treatment. Research works on the field of using CQDs in polymer materials, especially CQDs-reinforced composite materials have received attention in recent years. This is due to unique properties of carbon quantum dots such as renewability, stability, high mechanical properties, low weight, and comparatively low cost. This review article is aimed to discuss the physical, chemical and stability properties of CQDs, raw materials and synthesis methods as well as their potential applications in various fields, especially in the rubber industry. Finally, recent developments in the field of using carbon quantum dots in rubber products and their effects on the improvement of mechanical and dynamic properties are reviewed.

کلیدواژه‌ها [English]

  • Carbon quantum dots
  • rubber
  • filler
  • nanocomposite
  • reinforcement
  1. Xue B., Yang Y., Sun Y., Fan J., Li X., and Zhang Z., Photoluminescent Lignin Hybridized Carbon Quantum Dots Composites for Bioimaging Applications, Int. J. Biol. Macromol. 122, 954-961, 2019.
  2. Joshi P.N., Mathias A., Mishra A., and Mathias A., Synthesis of Ecofriendly Fluorescent Carbon Dots and Their Biomedical and Environmental Applications, Mater. Technol., 33, 680-672, 2018.
  3. Liang Z., Yang J., Zhou C., Mo Q., and Zhang Y., Carbon Quantum Dots Modified BiOBr Microspheres with Enhanced Visible Light Photocatalytic Performance, Inorg. Chem. Commun., 90, 97-100, 2018.
  4. Lim H., Liu Y., Kim H.Y., and Son D.I., Facile Synthesis and Characterization of Carbon Quantum Dots and Photovoltaic Applications, Thin Solid Films, 660, 672–677, 2018.
  5. Das R., Bandyopadhyay R., and Pramanik P., Carbon Quantum Dots from Natural Resource: A Review, Mater. Today Chem., 8, 96-109, 2018.
  6. Saud P.S., Pant B., Alam A.-M., Ghouri Z.K., Park M., and Kim H.-Y., Carbon Quantum Dots Anchored TiO2 Nanofibers: Effective Photocatalyst for Waste Water Treatment, Ceram. Int., 41, 11953–11959, 2015.
  7. Yu J., Han L., Liu S.G., Ju Y.J., Gao X., Li N.B. et al., Green Fluorescent Carbon Quantum Dots as a Label-Free Probe for Rapid and Sensitive Detection of Hematin, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 212, 167–172, 2019.
  8. Namdari P., Negahdari B., and Eatemadi A., Synthesis, Properties and Biomedical Applications of Carbon-Based Quantum Dots: An Updated Review, Biomed. Pharmacother., 87, 209–222, 2017.
  9. Shi Y., Liu X., Wang M., Huang J., Jiang X., Pang J. et al., Synthesis of N-Doped Carbon Quantum Dots from Bio-waste Lignin for Selective Irons Detection and Cellular Imaging, Int.
  10. Biol. Macromol., 128, 537–545, 2019.
  11. Rajabi H.R., Khani O., Shamsipur M., and Vatanpour V., High-Performance Pure and Fe3+ Ion Doped ZnS Quantum Dots as Green Nanophotocatalysts for the Removal of Malachite Green under UV-Light Irradiation, J. Hazard. Mater., 250–251, 370–378, 2013.
  12. Gyulai G., Ouanzi F., Bertóti I., Mohai M., Kolonits T., Horváti K. et al., Chemical Structure and in Vitro Cellular Uptake of Luminescent Carbon Quantum Dots Prepared by Solvothermal and Microwave Assisted Techniques, J. Colloid Interface. Sci., 549, 150–161, 2019.
  13. Salifairus M.J., Abd Hamid S.B., Soga T., Alrokayan S., Khan H., and Rusop M., Structural and Optical Properties ofGraphene from Green Carbon Source via Thermal Chemical Vapor Deposition, J. Mater. Res., 31, 1947–1956, 2016.
  14. Zhong Q., Chen Y., Su A., and Wang Y., Synthesis of Catalytically Active Carbon Quantum Dots and Its Application for Colorimetric Detection of Glutathione, Sensors Actuators B: Chem., 273, 1098–1102, 2018.
  15. Devi P., Rajput P., Thakur A., Kim K., and Kumar P., Recent Advances in Carbon Quantum Dot-Based Sensing of Heavy Metals in Water, TrAC Trends Anal. Chem., 114, 171–95, 2019.
  16. Sabet M. and Mahdavi K., Green Synthesis of High Photoluminescence Nitrogen-Doped Carbon Quantum Dots from Grass Via a Simple Hydrothermal Method for Removing Organic and Inorganic Water Pollutions, Appl. Surf. Sci., 463, 283–91, 2019.
  17. Souza D.R., Caminhas L.D., de Mesquita J.P., and Pereira F.V., Luminescent Carbon Dots Obtained from Cellulose, Mater. Chem. Phys., 203, 148–155, 2018.
  18. Molaei M.J., A Review on Nanostructured Carbon Quantum Dots and Their Applications in Biotechnology, Sensors, and Chemiluminescence, Talanta, 196, 456-478, 2019.
  19. Ramar V., Moothattu S., and Balasubramanian K., Metal Free, Sunlight and White Light Based Photocatalysis Using Carbon Quantum Dots from Citrus Grandis: A Green Way to Remove Pollution, Sol Energy, 169, 120–127, 2018.
  20. Manan F.A.A., Hong W.W., Abdullah J., Yusof N.A., and Ahmad I., Nanocrystalline Cellulose Decorated Quantum Dots Based Tyrosinase Biosensor for Phenol Determination, Mater. Sci. Eng. C, 99, 37–46, 2019.
  21. Soleymani J., Hasanzadeh M., Somi M.H., Ozkan S.A., and Jouyban A., Targeting and Sensing of Some Cancer Cells Using Folate Bioreceptor Functionalized Nitrogen-Doped Graphene Quantum Dots, Int. J. Biol. Macromol., 118, 1021–1034, 2018.
  22. Feng S., Gao Z., Liu H., Huang J., Li X., and Yang Y., Feasibility of Detection Valence Speciation of Cr (III) and Cr (VI) in Environmental Samples by Spectrofluorimetric Method with Fluorescent Carbon Quantum Dots, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 212, 286–292, 2019.
  23. Athika M., Prasath A., Duraisamy E., Sankar Devi V., Selva Sharma A., and Elumalai P., Carbon Quantum Dots Derived from Denatured Milk for Efficient Chromium-Ion Sensing and Supercapacitor Applications, Mater. Lett., 241, 156–159, 2019.
  24. Ratnayake S.P., Mantilaka M.M.M.G.P.G., Sandaruwan C., Dahanayake D., Murugan E., Kumar S. et al., CarbonQuantum Dots-Decorated Nano-zirconia: A Highly Efficient Photocatalyst, Appl. Catal. a Gen., 570, 23–30, 2019.
  25. Yadegari A., Khezri J., Esfandiari S., Mahdavi H., Karkhane A.A., Rahighi R. et al. Bottom up Synthesis of Nitrogen and Oxygen Co-Decorated Carbon Quantum Dots with Enhanced DNA Plasmid Expression, Colloids Surfaces B. Biointerfaces, 184, 110543, 2019.
  26. Wang Z., Zhao X., Guo Z., Miao P., and Gong X., Carbon Dots Based Nanocomposite Thin Film for Highly Efficient Luminescent Solar Concentrators, Org. Electron., 62, 284–289, 2018.
  27. Arvind S., Mohapatra P.K., Kalyanasundaram D., and Kumar S., Self-Functionalized Ultra Stable Water Suspension of Luminescent Carbon Quantum Dots, Mater. Chem. Phys., 225, 23–27, 2019.
  28. Lei C.W., Hsieh M.L., and Liu W.R., A Facile Approach to Synthesize Carbon Quantum Dots with PH-Dependent Properties, Dye Pigment., 169, 73–80, 2019.
  29. Arumugam N. and Kim J., Synthesis of Carbon Quantum Dots from Broccoli and their Ability to Detect Silver Ions, Mater. Lett., 219, 37–40, 2018.
  30. Cheng J., Xu Y., Zhou D., Liu K., Geng N., Lu J. et al., Novel Carbon Quantum Dots Can Serve as an Excellent Adjuvant for The Gp85 Protein Vaccine Against Avian Leukosis Virus

Subgroup J In Chickens, Poult. Sci., 98, 5315–5320, 2019.

  1. Wang Q., Wang G., Liang X., Dong X., and Zhang X., Supporting Carbon Quantum Dots on NH2-MIL-125 for Enhanced Photocatalytic Degradation of Organic Pollutants Under a Broad-Spectrum Irradiation, Appl. Surf. Sci., 467–468, 320–327, 2019.
  2. Parthiban V., Panda S.K., and Sahu A.K., Highly Fluorescent Carbon Quantum Dots-Nafion as Proton Selective Hybrid Membrane for Direct Methanol Fuel Cells, Electrochim. Acta, 292, 855–864, 2018.
  3. Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y. et al., Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid, Carbon, 50, 4738–4743, 2012.
  4. Piri M., Sepehr E., and Rengel Z., Citric Acid Decreased and Humic Acid Increased Zn Sorption in Soils, Geoderma, 341, 39–45, 2019.
  5. Kalaiyarasan G. and Joseph J., Cholesterol Derived Carbon Quantum Dots an Fluorescence Probe for The Specific Detection of Hemoglobin in Diluted Human Blood Samples, Mater. Sci. Eng. C, 94, 580–586, 2019.
  6. Yang P., Zhu Z., Chen M., Chen W., and Zhou X., Microwave-

Assisted Synthesis of Xylan derived Carbon Quantum Dots for

Tetracycline Sensing, Opt. Mater. (Amst), 85, 329–336, 2018.

  1. Kong L., Zhu Y., Huang G., and Wu J., Carbon Nanodots asDual Role of Crosslinking and Reinforcing Chloroprene Rubber, Compos. Commun., 22, 100441, 2020.
  2. Sui Y., Wu L., Zhong S., and Liu Q., Carbon Quantum Dots/TiO2 Nanosheets with Dominant (001) Facets for Enhanced Photocatalytic Hydrogen Evolution, Appl. Surf. Sci., 480, 810–816, 2019.
  3. Algarra M., González-Calabuig A., Radotić K., Mutavdzic D., Ania C.O., Lázaro-Martínez J.M. et al., Enhanced Electrochemical Response of Carbon Quantum Dot Modified Electrodes, Talanta, 178, 679–685, 2018.
  4. Xie X., Yang Y., Xiao Y.-H., Huang X., Shi Q., and Zhang W.-D., Enhancement of Photoelectrochemical Activity of Fe2O3 Nanowires Decorated with Carbon Quantum Dots, Int. J. Hydrogen. Energy, 43, 6954–6962, 2018.
  5. Vieira K.O., Bettini J., Fernando L., De Oliveira C., Luis J., and Schiavon M.A., Synthesis of Multi Color Photoluminescent Carbon Quantum Dots Functionalized with Hydrocarbons of Different Chain Lengths, New Carbon Mater., 32, 327–337, 2017.
  6. Javed M., Saqib A.N.S., Ata-ur-Rehman Ali B., Faizan M., Anang D.A., Iqbal Z. et al., Carbon Quantum Dots from Glucose Oxidation as a Highly Competent Anode Material for Lithium and Sodium-Ion Batteries, Electrochim. Acta, 297, 250–257, 2019.
  7. Yang W., Yang H., Ding W., Zhang B., Zhang L., and Wang L., High Quantum Yield ZnO Quantum Dots Synthesizing via an Ultrasonication Microreactor Method, Ultrason. Sonochem., 33, 106–117, 2016.
  8. Alarfaj N., El-Tohamy M., and Oraby H., CA 19-9 Pancreatic Tumor Marker Fluorescence Immune Sensing Detection via Immobilized Carbon Quantum Dots Conjugated Gold Nanocomposite, Int. J. Mol. Sci., 19, 1162, 2018.
  9. Tian P., Tang L., Teng K.S., and Lau S.P., Graphene Quantum Dots from Chemistry to Applications, Mater. Today Chem., 10, 221–258, 2018.
  10. He M., Zhang J., Wang H., Kong Y., Xiao Y., and Xu W., Material and Optical Properties of Fluorescent Carbon Quantum Dots Fabricated from Lemon Juice via Hydrothermal Reaction, Nanoscale. Res. Lett., 13, 175, 2018.
  11. Zhang Z., Wu L., Wang P., Zhang Y., Wan S., Guo X. et al., Carbon Quantum Dots Modified La2Ti2O7 Nanosheets for Visible Light Photocatalysis, Mater. Lett., 230, 72–75, 2018.
  12. Devi P., Saini S., and Kim K.-H., The Advanced Role of Carbon Quantum Dots in Nanomedical Applications, Biosens. Bioelectron., 141, 111158, 2019.
  13. Edayadiyil J.J., Abraham J., Rajeevan S. et al., Synthesis and Characterization of Natural Rubber/Graphene Quantum Dot Nanocomposites, J. Polym. Res., 28, 358, 2021.
  14. Xie F., Yang Z., Xu E., Liqun Z., and Dongmei Y., Preparationof Graphene Quantum Dots Modified Hydrogenated Carboxylated Nitrile Rubber Interpenetrating Cross-Linked Film, Colloid. Polym. Sci., 298, 1361–1368, 2020.
  15. Li J., Guo H., Wei A., Jingzhe J., Yue J., Huijun Q. et al., Preparation and Characterization of Blue-Emitting Carbon Quantum Dots and Their Silicone Rubber Composites, Mater. Res. Express, 6, 45310, 2019.
  16. Takemura K., Satoh J., Boonyakida J., Park S., Chowdhury A.D., and Park E.Y., Electrochemical Detection of white Spot Syndrome Virus with a Silicone Rubber Disposable Electrode Composed of Graphene Quantum Dots and Gold Nanoparticle-Embedded Polyaniline Nanowires, J. Nanobiotechnol., 18, 1-12, 2020.