مروری بر افزودن نانومواد برای رفع مشکلات پوشش های پلیمری لاستیک سیلیکون اعمالی بر مقره های خطوط فشار قوی صنعت برق

نوع مقاله : تالیفی

نویسندگان

1 دانشگاه علم و صنعت ایران

2 پژوهشگاه استاندارد

چکیده

در پست های فشار قوی برق مستقر در مجاورت کارخانه های صنعتی و مناطق با شرایط آب و هوایی ساحلی، آلودگی مقره به شدت بر قابلیت اطمینان شبکه انتقال اثر می گذارد. به دلیل اهمیت بسیار زیاد مقره در زمینه انتقال برق، نیاز به افزایش قابلیت اطمینان این تجهیزات با بهره گیری از روش های مختلف وجود دارد. روش های رایج شامل شست و شوی دوره ای و روغنکاری و استفاده از پوشش های پلیمری لاستیک سیلیکون ولکانیده در دمای محیط (RTV) است. در این میان، پوشش های  پلیمری به دلیل عملکرد بسیار خوب در شرایط محیطی آلوده، مقاومت دربرابر عوامل جوی و ذرات معلق و همچنین طولانی تر کردن عمر و کاهش هزینه تعمیر و تعویض مقره ها به عنوان روش کارآمدی در دنیا مطرح شده اند. در سال های اخیر، گزارش های متعددی درباره استفاده از علم و فناوری نانو به منظور بهبود خواص مقره ها ارائه شده است. امروزه استفاده از نانوپوشش های برپایه RTV در بسیاری از کشورها موضوعی متداول بوده و بازدهی مناسبی به همراه داشته است. از این رو، امکان سنجی، بهینه سازی و انتخاب پوشش مناسب برای اعمال روی مقره های نصب شده در مناطق مختلف کشور متناسب با وضعیت آب و هوایی مختص آن منطقه ضروری به نظر می رسد. در این مقاله، راهکار افزودن نانومواد برای رفع مشکلات پوشش های پلیمری لاستیک سیلیکون اعمال شده بر مقره های خطوط فشار قوی استفاده شده در صنعت برق مرور شده است. رایج ترین نانوذرات استفاده شده برای بهبود خواص پوشش ها، نقش این پرکننده ها در اصلاح خواص پوشش و چالش های موجود در توزیع یکنواخت نانوذرات در ماتریس پلیمری نیز بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Overview of the Addition of Nanomaterials to Solve the Problems of Silicone Rubber Polymer Coatings Applied to the Insulators of High-Voltage Power Lines in the Electrical Industry

نویسندگان [English]

  • Hamidreza Koohdar 1
  • Nasim NayebPashaee 2
1 Iran University of Science and Technology (IUST)
2 Standard Research Institue
چکیده [English]

For high-voltage transmission lines near industrial plants and in areas with coastal weather conditions, insulation contamination strongly affects the reliability of the transmission network. Due to the great importance of insulation in power transmission, it is necessary to increase the reliability of these equipment through various methods. Common
methods include regular washing and lubrication and use of room temperature vulcanized (RTV) silicone rubber polymer coatings. In the meantime, application of polymer coatings perform have been proposed as an efficient method worldwide, due to their very good performance in polluted environmental, resistant to weathering and suspended particles, as well as prolonging the life and reducing the cost of repairing and replacing insulators. In recent years, several reports have been published on the use of nanotechnology to improve the properties of insulators. Today, the use of RTV-based nanocoatings is common in many countries and has brought good results. Therefore, it seems necessary to assess the feasibility, optimization and selection of the appropriate coating to be applied on the insulators installed in different regions of the country are appropriate according to the specific weather conditions of that region. In this article, the solution of adding nanomaterials to solve the problems of silicone rubber polymer coatings applied on high-pressure insulators in the electrical industry is reviewed. The most common nanoparticles used to improve the properties of the coatings, the role of this filler in improving the properties of the coating, and the existing challenges in the uniform distribution of nanoparticles in the polymer matrix are also explained.

کلیدواژه‌ها [English]

  • self-cleaning polymer nano coating
  • super-hydrophobic: insulation
  • silicone rubber
  • increasing lifespan
  1.  

    1. Contreras J.E. and Rodríguez E.A., Nanostructured Insulators–A Review of Nanotechnology Concepts for Outdoor Ceramic Insulators, Ceram. Int., 43, 8545–8550, 2017.
    2. Wibowo A.B., Increasing the Performances of Various Types’ Outdoor Insulators by Using RTV Silicone Rubber Coating, Int. J. Electr. Eng. Inform., 4, 608–619, 2012.
    3. Baker A.C., Farzaneh M., Gorur R.S., Gubanski S.M., Hill R.J., Karady G.G., and Schneider H.M., Insulator Selection for AC Overhead Lines with Respect to Contamination, IEEE Trans. Power Deliv., 24, 1633-1641, 2009.
    4. Cherney E.A., El-Hag A., Li S., Gorur R.S., Meyer L., Ramirez I., Marzinotto M., and George J.M., RTV Silicone Rubber Pre-Coated Ceramic Insulators for Transmission Lines, IEEE Trans. Power Deliv., 20, 237-244, 2013.
    5. Yuan X., Lu H., Lan L., Wang H., Wen X., Liao Y., and Zhang F.J., Study on the Effect of Corona on Hydrophobicity Recovery Performance of RTV Silicone Rubber and Its Failure Criterion, 2016 IEEE Electrical Insulation Conference (EIC), Montreal, QC, Canada, 215-218, 2016.
    6. Taghvaei M., Sedighizadeh M., NayebPashaee N., and Fini A.S., Reliability Assessment of RTV and Nano-RTV-Coated Insulators Concerning Contamination Severity, Electer. Pow. Syst. Res., 191, 106892, 2021.
    7. Wu L., Wang X., Ning L., Han J., Wan Z., and Lu M., Improvement of Silicone Rubber Properties by Addition of Nano-SiO2 Particles, J. Appl. Biomater. Func., 14, 11-14, 2016.
    8. Momen G. and Farzaneh M., Survey of Micro/Nano Filler Use to Improve Silicone Rubber for Outdoor Insulators, Rev. Adv. Mater. Sci., 27, 1-13, 2011.
    9. Ansorge S., Improvement of Silicone Rubber for High Voltage Applications by Addition of Fillers, PhD Dissertation, ETH Zurich, 2015.
    10. Momen G. and Farzaneh M., A ZnO-Based Nanocomposite Coating with Ultra-water Repellent Properties, Appl. Surf. Sci., 258, 5723-5728, 2012.
    11. Wang F.F., Yan D.D., Su Y., Lu Y.F., Xia X.F., and HuangH.M., Research on the Dielectric Properties of Nano-ZnO/Silicone Rubber Composites, IOP Conf. Series: Mater. Sci. Eng., 231, 012060, 2017.
    12. Zolriasatein A., RajabiMashhadi Z., Rezaei Abadchi M., Riahi Noori N., and Abyazi S., A New Approach Based on RTV/SiO2 Nano coating to Tackling Environmental Pollution on Electrical Energy Distributions, J. Renew. Energy Environ., 9, 45-51, 2022.
    13. Wu L., Wang X., Ning L., Han J., Wan Z., and Lu M., Improvement of Silicone Rubber Properties by Addition of Nano-SiO2 Particles, J. Appl. Biomater. Funct. Mater., 14, 11-14, 2016.
    14. Hussain M.M., Farokhi S., McMeekin S.G., and Farzaneh M., Effect of Cold Fog on Leakage Current Characteristics of Polluted Insulators, 2015 International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), Bangalore, India, 163-167, 2015.
    15. Taghvaee M., Nayebpashaee N., and Sedighzadeh M., Proposing Model for Porcelain Insulators Lifespan Estimation Considering Thermal and Electrical Stability in Presence of Contamination, J. Iran. Ceram. Soc., 17, 61-71, 2021.
    16. Zolriasatein A., Rajabi Mashhadi Z., Navazani S., Rezaei Abadchi M., Riahi Noori N., and Abdi N., Investigation of Electrical Properties of Silica-Reinforced RTV Nanocomposite Coatings, J. Mater. Sci. Mater. Electron., 32, 12265-12274, 2021.
    17. Zolriasatein A., Navazani S., Abadchi M.R., and Noori N.R., Two-Component Room Temperature Vulcanized Silicone-Rubber (RTV2) Properties Modification: Effect of Aluminum Three Hydrate and Nanosilica Additions on the Microstructure, Electrical, and Mechanical Properties, J. Mater. Sci. Mater. Electron., 32, 8903-8915, 2021.
    18. Nobari S., Mokher S.R., Zolriyastin, A., and Alam Dost B., Application of Nano Coatings on Electrical Insulators, Sixth National Conference on Nano Technology in Electrical Industry, Tehran, 2017.
    19. Zolriasatein A., Navazani S., Rezaei Abdadchi M., and Riahi Noori N., Investigation of the Effect of Adding Aluminum Trihydrate (ATH) Particles on Electrical and Hydrophobic Properties of Two-Part RTV Silicon Rubber, J. Adv. Mater. Eng., 39, 117-128, 2022.
    20. Kumar V., Kumar A., Song M., Lee D.J., Han S.S., and Park S.S., Properties of Silicone Rubber-Based CompositesReinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide, Polymers, 13, 1-17, 2021.
    21. Mirabedini S.M., Mohseni M., Pazoki-Fard S., and Esfandeh M., Effect of TiO2 on the Mechanical and Adhesion Properties of RTV Silicone Elastomer Coatings, Colloids Surf. A: Physicochem. Eng. Asp., 317, 80-86, 2008.
    22. Jia Z., Gao H., Guan Z., Wang L., and Yang J., Study on Hydrophobicity Transfer of RTV Coatings Based on a Modification of Absorption and Cohesion Theory, IEEE Trans. Dielectr. Electr. Insul., 13, 1317-1324, 2006.
    23. Kumar V., Kumar A., Wu R.R., and Lee D.J., Room-Temperature Vulcanized Silicone Rubber/Barium Titanate–Based High-Performance Nanocomposite for Energy Harvesting, Mater. Today Chem., 16, 100232. 2020.
    24. Zolriyastin A., Riahi Nouri N., Mahdikhani A., Falah Arani H. and Salarakhili S., Implementation of Silicon Nano Coating Pilot on Insulating Equipment of Selected Substations in Tehran and Mashhad and Evaluation of Field Performance Results, 7th National Nanotechnology Conference in Electricity Industry, Tehran, 2018.
    25. Liao K. and Zhu J., A Facile and Cost-Effective Method to Prepare a Robust Superhydrophobic RTV Silicone Coating, Coatings, 11, 312, 2021.
    26. Ahmadzadeh H. and Raisi M., Evaluation of the Use of Nano Ceramic Coating and RTV Silicone Rubber Coating in High Pressure Insulators, The 10th Joint Conference and the 5th International Conference of the Materials Engineering and Metallurgical Association and the Iranian Casting Scientific Association, Shiraz, 2015.
    27. Kumar V. and Lee D.J., Studies of Nanocomposites Based on Carbon Nanomaterials and RTV Silicone Rubber, J. Appl. Polym. Sci., 134, 2017.
    28. Seyedmehdi S.A., Zhang H., and Zhu J., Superhydrophobic RTV Silicone Rubber Insulator Coatings, Appl. Surf. Sci., 258, 2972-2976, 2012.
    29. Nayebpashaee N., Taghvaee M., and Sedighzadeh M., The Effect of Surface Modification of ZnO and SiO2 Nanoparticles and Applying Nano-RTV on Improving the Properties of Porcelain Insulators, J. Iran. Ceram. Soc., 16, 59-75, 2021.
    1. Taghvaei M., Sedighizadeh M., NayebPashaee N., and Fini A.S., Thermal Stability of Nano RTV Vs. RTV Coatings in Porcelain Insulators, Therm. Sci. Eng. Prog., 20, 100696. 2020.