مروری بر فناوری چاپ چهاربعدی در مهندسی بافت

نوع مقاله : تالیفی

نویسندگان

1 دانشکده فناوری های نوین /دانشگاه علم و صنعت

2 دانشگاه علم وصنعت

چکیده

در چاپ سه ­بعدی یا تولید افزایشی (AM) سازه­ هایی با استفاده از روش لایه ­به­ لایه کنترل­ شده با رایانه ساخته می­ شوند. این نوع چاپ نقش اساسی در ساخت سامانه­ های به ­کاررفته در زمینه زیست ­پزشکی، مانند ایجاد ساختارهای بافتی پیچیده و داربست­ ها، سامانه ­های دارورسانی (DDS) و ربات های نرم ایفا می­ کند. چاپ چهاربعدی، مفهوم گسترده­­ چاپ سه­ بعدی با افزودن بعد زمان به آن است. به­ عبارتی، این فناوری تغییرشکل و تغییر عملکرد جسم چا­پ ­شده را دربرابر محرک­ هایی مانند رطوبت، گرما، pH، میدان الکتریکی و مغناطیسی و غیره امکان­ پذیر می­ سازد. چاپ چهاربعدی به­ دلیل استفاده از مواد پاسخگو به محرک که کنترل تغییرشکل در اجسام چاپ­ شده را ممکن می­ کند، برای کاربرد در زیست­ فناوری جذابیت زیادی دارد. به­ طور مثال در مهندسی بافت، روند ترمیم بافت آسیب­ دیده، روندی پویاست. روش­ های معمول مبتنی بر چاپ سه ­بعدی داربست­ هایی را ارائه می ­دهند که قابلیت به ­کارگیری در این محیط پویا را ندارند. فناوری چاپ چهاربعدی با توجه به ویژگی­ های منحصربه ­فرد آن، بهره ­وری از داربست­ های چاپ­شده با این روش را برای کاشت در محیط مدنظر امکان­پذیر می­ سازد. در این مطالعه، استفاده از مواد پاسخگو به محرک در ساختارهای چهاربعدی و کاربردهای جذاب آن ­ها در مهندسی بافت مرور شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review on 4D Printing Technology in Tissue Engineering

نویسندگان [English]

  • Shadi Zarshad 1
  • Mohammad Aghajani Hashjin 2
1 Department of New Technologies/IUST
2 Department of New Technologies/IUST
چکیده [English]

3D-printing or additive manufacturing (AM) attempts to building objects by using computer-controlled layer-by-layer manner. 3D printing plays a essential role in the fabrication of systems utilized in the biomedical field, such as the creation of complex tissue structures and scaffolds, customized drug delivery systems (DDS), and soft robots. 4D-printing is an extended concept of 3D-printing by adding time as a fourth dimension. In other words, this technology makes it possible to change the shape and function of the printed object over time after triggered by stimuli such as temperature, moisture, electrical and magnetic fields, light and pH. 4D printing has shown interesting promise in biotechnology with a great shape control after printing by using stimuli-responsive materials. For example, in tissue engineering the repairing process of tissue was known as a dynamic process and 3D printed structures are ineffective in this dynamic environment, while 4D printing technology, due to its unique features, makes it possible to use scaffolds printed by this method for planting in the intended environment. In this study, the use of stimuli-responsive materials in 4D-printed structures and their attractive applications in tissue engineering have been reviewed.

کلیدواژه‌ها [English]

  • 4D-printing
  • tissue engineering
  • stimuli-responsive material
  • scaffold
  • polymer
  1. Lee K.Y. and Mooney D.J., Hydrogels for Tissue Engineering, Chem. Rev., 101, 1869-1880, 2001.
  2. Carvalho J.L., de Carvalho P.H., Gomes D.A., and de Goes A.M., Innovative Strategies for Tissue Engineering, Adv. Biomater., 11, 295, 2013.
  3. Eltom A., Zhong G., and Muhammad A., Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review, Adv. Mater. Sci. Eng., 2019, 2019.
  4. Ventola C.L, Medical Applications for 3D Printing: Current and Projected Uses, Pharm. Ther., 39, 704, 2014.
  5. Lui Y.S., Sow W.T., Tan L.P., Wu Y., Lai Y., and Li H., 4D Printing and Stimuli-Responsive Materials in Biomedical Aspects, Acta. Biomater., 92, 19-36, 2019.
  6. Shafranek R.T., Shafranek R.T., Millik S.C., Smith P.T., Lee C.U., Boydston A.J. et al., Stimuli-Responsive Materials in Additive Manufacturing, Prog. Polym. Sci., 93, 36-67, 2019.
  7. Morouço P., Lattanzi W., and Alves N., Four-Dimensional Bioprinting as a New Era for Tissue Engineering and Regenerative Medicine, Front. Bioeng. Biotechnol., 61, 2017.
  8. Hasan S.M., Nash L.D., and Maitland D.J., Porous Shape Memory Polymers: Design and Applications, J. Polym. Sci. Pol. Phys., 54, 1300-1318, 2016.
  9. Liu C., Qin H., and Mather P., Review of Progress in Shape-Memory Polymers, J. Mater. Chem., 17, 1543-1558, 2007.
  10. Zarek M., Mansour N., Shapira S., and Cohn D., 4D Printing of Shape Memory‐Based Personalized Endoluminal Medical Devices, Macromol. Rapid. Comm., 38, 1600628, 2017.
  11. Liu D., Xiang T., Gong T., Tian T., Liu X., and Zhou S., Bioinspired 3D Multilayered Shape Memory Scaffold with a Hierarchically Changeable Micropatterned Surface for Efficient Vascularization, ACS Appl. Mater. Int., 9, 19725-19735, 2017.
  12. Miao S., Cui H., Nowicki M., Xia L., Zhou X., Lee S.J. et al., Stereolithographic 4D Bioprinting of Multiresponsive Architectures for Neural Engineering, Adv. Biosyst., 2, 1800101, 2018.
  13. Miao S., Zhu W., Castro N.J., Leng J., and Zhang L.G., Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications, Tissue Eng. Part C: Methods, 22, 952-963, 2016.
  14. Joseph J.S., Malindisa S.T., and Ntwasa M., Two-Dimensional (2D) and Three-Dimensional (3D) Cell Culturing in Drug Discovery, Cell Culture, 2, 1-22, 2018.
  15. Kwag H.R., Serbo J.V., Korangath P., Sukumar S., Romer L.H., and Gracias D.H., A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma, Tissue Eng. Part C: Methods,

22, 398-407, 2016.

  1. Kirillova A., Maxson R., Stoychev G., Gomillion C.T., and Ionov L., 4D Biofabrication Using Shape‐Morphing Hydrogels, Adv. Mater., 29, 1703443, 2017.
  2. Ilg P., Stimuli-Responsive Hydrogels Cross-Linked by Magnetic Nanoparticles, Soft Matter, 9, 3465-3468, 2013.
  3. Betsch M., Cristian C., Lin Y.Y., Blaeser A., Schöneberg J., Vogt M. et al., Incorporating 4D into Bioprinting: Real‐Time Magnetically Directed Collagen Fiber Alignment for Generating Complex Multilayered Tissues, Adv. Healthc. Mater., 7, 1800894, 2018.
  4. Traitel T. and Kost J., pH-Responsive Hydrogels: Swelling Model in Biomaterials, Biomaterials, 29-43, 2004.
  5. Sang Q., Li H., Williams G., Wu H., and Zhu L.M., Core-Shell Poly(lactide-co-ε-caprolactone)-Gelatin Fiber Scaffolds as pH-Sensitive Drug Delivery Systems, J. Biomater. Appl., 32, 1105-1118, 2018.
  6. Li L., Scheiger J.M., and Levkin P.A., Design and Applications of Photoresponsive Hydrogels, Adv. Mater., 31, 1807333, 2019.
  7. Kloxin A.M., Kasko A.M., Salinas C.N., and Anseth K.S., Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties, Science, 324, 59-63, 2009.
  8. Cui H., Miao S., Esworthy T., Lee S.J., Zhou X., Hann S.Y. et al., A Novel Near-Infrared Light Responsive 4D Printed Nanoarchitecture with Dynamically and Remotely Controllable

Transformation, Nano. Res., 12, 1381-1388, 2019.

  1. Shi Q., Liu H., Tang D., Li Y., Li X., and Xu F., Bioactuators Based on Stimulus-Responsive Hydrogels and their Emerging Biomedical Applications, NPG Asia. Mater., 11, 64, 2019.
  2. Servant A., Leon V., Jasim D., Methven L., Limousin P., Fernandez‐Pacheco E.V. et al., Graphene‐Based Electroresponsive Scaffolds as Polymeric Implants for On‐Demand Drug Delivery, Adv. Healthc. Mater., 3, 1334-1343, 2014.
  3. Rahmani A., Nadri S., Kazemi H.S., Mortazavi Y., and Sojoodi M., Conductive Electrospun Scaffolds with Electrical Stimulation for Neural Differentiation of Conjunctiva Mesenchymal Stem Cells, Artif. Org., 43, 780-790, 2019.