1. Rorrer J.E., Beckham G.T., and Román-Leshkov Y., Conversion of Polyolefin Waste to Liquid Alkanes with Ru-Based
Catalysts under Mild Conditions, JACS Au., 1, 8-12, 2020.
2. Zhang Y. and Jian Z., Polar Additive Triggered Branching Switch and Block Polyolefin Topology in Living Ethylene
Polymerization, Macromolecules, 54, 3191-3196, 2021.
3. Dai S., Li S., Xu G., and Chen C., Direct Synthesis of Polar Functionalized Polyethylene Thermoplastic Elastomer,
Macromolecules, 53, 2539-2546, 2020.
4. You W., Ganley J.M., Ernst B.G., Peltier C.R., Ko H.-Y., DiStasio R.A. et al., Expeditious Synthesis of Aromatic-free
Piperidinium-Functionalized Polyethylene as Alkaline Anion Exchange Membranes, Chem. Sci., 12, 3898-3910, 2021.
5. Dai S. and Chen C., A Self-Supporting Strategy for Gas-Phase and Slurry-Phase Ethylene Polymerization Using Late-Tran-sition-Metal Catalysts., Angew. Chem. Int. Ed., 59, 14884-14890, 2020.
6. Chai Y., Wang L., Liu D., Wang Z., Run M., and Cui D., Polar-Group Activated Isospecific Coordination Polymerization
of Ortho-Methoxystyrene: Effects of Central Metals and Ligands, Chem. Eur. J., 25, 2043-2050, 2019.
7. Goetjen T.A., Liu J., Wu Y., Sui J., Zhang X., Hupp J.T. et al., Metal–organic Framework (MOF) Materials as Polymerization Catalysts: A Review and Recent Advances, Chem. Commun., 56, 10409-10418, 2020.
8. Cámpora J. and Brasse M., Challenges and Breakthroughs in Transition Metal Catalyzed Copolymerization of Polar and
Non-polar Olefins, Springer, 199-261, 2011.
9. Kumawat J. and Gupta V.K., Single to Multiple Site Behavior of Metallocenes through C–H Activation for Olefin Polym-
erization: A Mechanistic Insight from DFT, ACS Catal., 10, 1704-1715, 2019.
10. Parveen R., Cundari T.R., Younker J.M., Rodriguez G., and McCullough L., DFT and QSAR Studies of Ethylene Polym-
erization by Zirconocene Catalysts, ACS Catal., 9, 9339-9349, 2019.
11. Szabo M.J., Jordan R.F., Michalak A., Piers W.E., Weiss T., Yang S.-Y. et al., Polar Copolymerization by a Palladium−
Diimine-based Catalyst: Influence of the Catalyst Charge and Polar Substituent on Catalyst Poisoning and Polymerization
Activity, Organometallics, 23, 5565-5572, 2004.
12. Liao Y., Zhang Y., Cui L., Mu H., and Jian Z., Pentiptyce-nyl Substituents in Insertion Polymerization with α-Diimine
Nickel and Palladium Species, Organometallics, 38, 2075-2083, 2019.
13. Kottisch V., O’Leary J., Michaudel Q., Stache E.E., Lambert T.H., and Fors B.P., Controlled Cationic Polymerization: Sin-
gle-Component Initiation Under Ambient Conditions, J. Am. Chem. Soc., 141, 10605-10609, 2019.
14. Kanai Y., Foro S., and Plenio H., Bispentiptycenyl–Diimine–Nickel Complexes for Ethene Polymerization and Copolymer-ization with Polar Monomers, Organometallics, 38, 544-551, 2019.
15. Mehmood A., Xu X., Kang X., and Luo Y., Origin of Differ-ent Chain-End Microstructures in Ethylene/Vinyl halide Co-
polymerization Catalysed by Phosphine–Sulfonate Palladium Complexes, New J. Chem., 44, 16941-16947, 2020.
16. Nagel M. and Sen A., Intermediacy of Radicals in Rearrange-ment and Decomposition of Metal−Alkyl Species: Relevance to Metal-Mediated Polymerization of Polar Vinyl Monomers, Organometallics, 25, 4722-4724, 2006.
17. Chen M. and Chen C., A Versatile Ligand Platform for Palla-dium-and Nickel-Catalyzed Ethylene Copolymerization with Polar Monomers, Angew. Chemie Int. Ed., 57, 3094-3098, 2018.
18. Avar S., Mortazavi S.M.M., Ahmadjo S., and Zohuri G.H., α-Diimine Nickel Catalyst for Copolymerization of Hexene
and Acrylate Monomers Activated by Different Cocatalysts, Appl. Organomet. Chem., 32, 4238, 2018.
19. Chen G., Ma X.S., and Guan Z., Synthesis of Functional Olefin Copolymers with Controllable Topologies Using a
Chain-walking Catalyst, J. Am. Chem. Soc., 125, 6697-6704, 2003.
20. Chen J., Gao Y., and Marks T.J., Early Transition Metal Catalysis for Olefin–Polar Monomer Copolymerization,
Angew. Chem. Int. Ed., 59, 14726-14735, 2020.
21. Popeney C.S., Levins C.M., and Guan Z., Systematic Inves-tigation of Ligand Substitution Effects in Cyclophane-based
Nickel (II) and Palladium (II) Olefin Polymerization Catalysts, Organometallics, 30, 2432-2452, 2011.
22. Popeney C.S. and Guan Z., A Mechanistic Investigation on Copolymerization of Ethylene with Polar Monomers Using a Cyclophane-Based Pd (II) α-Diimine Catalyst, J. Am. Chem. Soc., 131, 12384-12393, 2009.
23. Mitchell N.E. and Long B.K., Recent Advances in Thermally Robust, Late Transition Metal-Catalyzed Olefin Polymeriza-
tion, Polym. Int., 68, 14-26, 2019.
24. Chen C., Designing Catalysts for Olefin Polymerization and Copolymerization: Beyond Electronic and Steric Tuning, Nat. Rev. Chem., 2, 6-14, 2018.
25. Liu F.-S., Hu H.-B., Xu Y., Gua L.-H., Zai S.-B., Song K.-M. et al., Thermostable α-diimine Nickel (II) Catalyst for Ethylene Polymerization: Effects of the Substituted Backbone Structure on Catalytic Properties and Branching Structure of
Polyethylene, Macromolecules, 42, 7789-7796, 2009.
26. Hu X., Wang C., and Jian Z., Comprehensive Studies of the Ligand Electronic Effect on Unsymmetrical α-Diimine Nickel (II) Promoted Ethylene (co) Polymerizations, Polym. Chem., 11, 4005-4012, 2020.
27. Gates D.P., Svejda S.A., Oñate E., Killian C.M., Johnson L.K., White P.S. et al., Synthesis of Branched Polyethylene Using
(α-Diimine) Nickel(II) Catalysts: Influence of Temperature, Ethylene Pressure, and Ligand Structure on Polymer Proper-
ties, Macromolecules, 33, 2320-2334, 2000.