مطالعه سینتیک تخریب گرمایی کامپوزیت‌های اپوکسی-نانولوله‌های کربنی

نوع مقاله : تالیفی

نویسندگان

1 دانشکده مهندسی شیمی و پلیمر، دانشگاه آزاد اسلامی، واحد تهران جنوب

2 دانشجوی دکتری مهندسی پلیمر، گروه مهندسی پلیمر، دانشگاه آزاد اسلامی واحد تهران جنوب، صندوق پستی:466- 19585

چکیده

رزین­ های اپوکسی به ­علت ساختار شبکه ­ای و مقاومت ضعیف در برابر رشد ترک، معمولا دارای ساختار شکننده است.  بنابراین، افزایش چقرمگی رزین­ های اپوکسی با وجود نانوذرات پلیمری، از زمینه ­های مورد توجه پژوهشگران است. مطالعه تخریب نانوکامپوزیت­ های اپوکسی و مدل­سازی سینتیک تخریب به­ طور گسترده به ابزار اساسی برای مهندسان تبدیل شده است. با این کار می ­توان پایداری گرمایی مواد را پیش از به­ کارگیری در صنعت پیش ­بینی کرد که به کاهش هزینه­ ها و افزایش کیفیت محصول منجر می­ شود. اصلاح سطح نانولوله­ های کربنی و پراکنش نانوذرات دو عامل مهم در پایداری گرمایی نانوکامپوزیت­­ های اپوکسی در مجاورت نانولوله های کربنی است. نمونه هیبرید نانوکامپوزیت اپوکسی در مجاورت نانولوله ­های کربنی چنددیواره و نانوذرات رس نشان داد، وجود هم­زمان نانولوله ­های کربنی و نانوذرات رس می­ تواند به ­عنوان عامل بازدارنده تخریب گرمایی عمل کند و انرژی فعال­سازی  واکنش تخریب را نسبت به نمونه دیگر افزایش دهد. در این مقاله، اثر نانولوله ­های کربنی بر شکل­ شناسی، خواص رئولوژیکی و مکانیکی، تجزیه گرماوزن سنجی، پایداری گرمایی، رزین اپوکسی و مدل­سازی سینتیک تخریب نانوکامپوزیت ­های اپوکسی در مجاورت نانولوله­ های کربنی مرور می­ شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study of Thermal Degradation Kinetics of Epoxy/Carbon Nanotubes Composites

نویسندگان [English]

  • Mohammadreza Kalaee 1
  • Mohammad Hossein Karami 2
1 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.
2 Department of Polymer Engineering, Faculty Of Engineering, South Tehran Branch, Islamic Azad University, P.O. Box 19585-466, Tehran, Iran.
چکیده [English]

Epoxy resins usually have a brittle structure due to the cross-linked structure and poor resistance to crack growth. Therefore, increasing the toughness of epoxy resins in the presence of polymer nanoparticles is one of the fields of interest for researchers. Studying the degradation of epoxy nanocomposites and modeling the degradation kinetics have become widely used as an essential tool for engineers to predict the thermal stability of materials before using in industry, which leads to reduction in costs and an increase in product quality. Surface modification of carbon nanotubes and dispersion of nanoparticles are two important factors in the thermal stability of epoxy nanocomposites in the presence of carbon nanotubes. Hybrid epoxy nanocomposite in the presence of multi-walled carbon nanotubes and clay nanoparticles showed that the simultaneous presence of these nanoparticles can act as a preventive agent against thermal degradation and increase the activation energy of the degradation reaction. In this article, the effect of carbon nanotubes on morphology, rheological and mechanical properties, thermal gravimetric analysis, thermal stability of epoxy resin, and modeling of degradation kinetics of epoxy nanocomposites in the presence of carbon nanotubes are reviewed.

کلیدواژه‌ها [English]

  • carbon nanotube
  • epoxy resin
  • degradation kinetics
  • modeling
  • thermal gravimetric analysis (TGA)
1. Ahmadi Z., Epoxy in Nanotechnology: A Short Review, Prog. Org. Coat., 132, 445-448, 2019.
2. Zabihi O., Khayyam H., Fox B.L., and Naebe M., Enhanced Thermal Stability And Lifetime of Epoxy Nanocomposites 
Using Covalently Functionalized Clay: Experimental and Modelling, New J. Chem.,  39, 2269-2278, 2015.
3. Dzuhri S., Uhana N.Y., and Khairulazfar M., Thermal Stability and Decomposition Study of Epoxy/Clay Nanocomposites, 
Sains Malays, 44, 441-448, 2015.
4. Singh S., Srivasava V.K., and Prakash R.R., Characterisation of Multi-Walled Carbon Nanotube Reinforced Epoxy Resin 
Composites, Mater. Sci. Technol., 29, 1130-1134, 2013.
5. Chen H.O., Jacobs B., Wua W.G., Rudiger B., and Schadel B., Efect of Dispersion Method on Tribological Properties 
of Carbon Nanotube Reinforced Epoxy Resin Composites, Polym. Tes.,  26, 351-360, 2007.
6. Ton-That M.T., Ngo T.-D., Ding P., Fang G., Cole K.C., and Hoa S.V., Epoxy Nanocomposites: Analysis and Kinetics of 
Cure, Polym. Eng. Sci.,  44, 1132-1141, 2004.
7. Tezel G.B., Sarmah A., Desai S.A., Vashish M., and Green J., Kinetics of Carbon Nanotube-loaded Epoxy Curing: Rheometry, Diferential Scanning Calorimetry, and Radio Frequency Heating, Carbon, 175, 1-10, 2021.
8. Ngo T.-D., That T., Hoa M.T., and Cole K.C., Curing Kinetics and Mechanical Properties of Epoxy Nanocomposites Based 
on Diferent Organoclays,  Polym. Eng. Sci.,  47, 649-661, 2007.
9. Jin F.L., Li X., and Park S.J., Synthesis and Application of Epoxy Resins: A Review, J. Ind. Eng. Chem., 29, 1-11, 2015.
10. Schlagenhau F.L., Kuo Y.Y., Bahk Y.K., Nüesch F., and Wang J., Decomposition and Particle Release of a Carbon Nanotube/Epoxy Nanocomposite at Elevated Temperatures, J. Nanoparticle Res.,  17, 440, 2015.
11. Zhou Y.X., Wu P.X., Cheng Z.Y., Ingram J., and Jeelani S., Improvement in Electrical, Thermal and Mechanical Properties 
of Epoxy by Filling Carbon Nanotube, Express Polym. Lett., 2, 40-48, 2008.
12. Kim J.A., Seong D.G., Kang T.J., and Youn J.R., Efects of Surface Modifcation on Rheological and Mechanical Properties of CNT/Epoxy Composites,  Carbon,  44, 1898-1905,  2006.
13. Málek J., A Computer Program for Kinetic Analysis of Non-isothermal Thermoanalytical Data,  Thermochim. Acta,  138, 337-346,  1989.
14. Málek J., The Kinetic Analysis of Non-isothermal Data, Thermochim.  Acta,  200,  257-269,  1992.
15. Reso D., Cascaval C.N., Musata F., and  Ciobanu C., Cure Kinetics, Epoxy Resins Studied by Nonisothermal DSC Data, 
Thermochim. Acta, 383, 119-127, 2002.
16. Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Luis A., Pérez-Maqueda L.A., and Sbirrazzuoli N., ICTAC Kinetics Committee Recommendations for Analysis of Multi-sep Kinetics,  Thermochim. Acta,  689, 178597,  2020.
17. Ma P.C., Kim J.K., and Tang B.Z., Efects of Silane Functionalization on the Properties of Carbon Nanotube/Epoxy Nanocomposites,  Compos. Sci. Technol.,  67, 2965-2972,  2007.
18. Špitalský Z., Matějka L., Šlouf M., Konyushenko E.N., Kovářová J., Zemek J., and Kotek J., Modifcation of Carbon Nanotubes and Its Efect on Properties of Carbon Nanotube/Epoxy Nanocomposites,  Polym. Compos.,  30, 1378-1387, 2009.
19. Ventura I.A., Rahaman A., and Lubineau G., The Thermal Properties of a Carbon Nanotube-Enriched Epoxy: Thermal 
Conductivity, Curing, and Degradation Kinetics, J. Appl. Polym. Sci.,  130, 2722–2733, 2013.
20. Li C., Kang N.J., Labrandero S.D., Wan J., González C., and  Wang D.Y., Synergisic Efect of Carbon Nanotube and Polyethersulfone on Flame Retardancy of Carbon Fiber Reinforced Epoxy Composites,  Ind. Eng. Chem. Res.,  53, 1040-1047,  2014.
21. Xue Y., Shen M., Zeng S., Zhang W., Hao L., Yang L., and  Song P., A Novel Strategy for Enhancing the Flame Resisance, 
Dynamic Mechanical and the Thermal Degradation Properties of Epoxy Nanocomposites, Mater. Res. Express,  6, 125003, 
2019.
22. Puglia D., Valentini L., and Kenny J.M., Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy, J. Appl. Polym. Sci., 88, 452-458, 2003.
23. Zheng X., Li D., Feng C., and Chen X., Thermal Properties and Non-isothermal Curing Kinetics of Carbon Nanotubes/
Ionic Liquid/Epoxy Resin Sysems., Thermochim. Acta, 618, 18–25, 2015.
24. Aradhana R., Mohanty S., and  Nayak S.K., High PerformanceEpoxy Nanocomposite Adhesive: Efect of Nanofllers on Adhesive Strength, Curing and Degradation Kinetics,  Int. J. Adhes. Adhes., 84, 238-249, 2018.
25. Cividanes L.S., Simonetti E.A., Campos T.M., Bettoni T.S., Brunelli D.D., and Thim G.P., Anomalous Behavior of Thermal 
Stability of Amino-carbon Nanotube–Epoxy Nanocomposite, J. Compos. Mater., 49, 3067–3073, 2015.
26. Wang Y.T., Wang C.S., Yin H.Y., Wang L.L., Xie H.F., and  Cheng R.S., Carboxyl-Terminated Butadiene-Acrylonitrile-
Toughened Epoxy/Carboxyl-Modifed Carbon Nanotube Nanocomposites: Thermal and Mechanical Properties, Express 
Polym. Lett.,  6, 719-728, 2012.
27. Starink M.J., The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the 
Accuracy of Isoconversion Methods, Thermochim. Acta, 404, 163-176,  2003.
28. Karami M.H., Kalaee M.R., Mazinani S., Martínez V.G., Wellen R.M.R., Shanmugharaj A.M. et al., Isoconversional Model 
Approach and Cure Kinetics of Epoxy/NBR Nanocomposites, Proceeding of the 14th International Seminar on Polymer 
Science and Technology (ISPST 2020), Tarbiat Modares University, 9-12 November, 9-10, 2020.
29. Karami M.H. and Kalaee M.R., Curing of Epoxy/UFNBRP Nano Composites Using Calorimetric Method,  Proceeding 
of the 11th International Chemical Engineering Congress & Exhibition (IChEC 2020), Tehran University, 15-17 April, 15-
17, 2020. 
30. Karami M.H., Kalaee M.R., and Mazinani S., Chemorheology of Nano Acrylonitrile Butadiene Rubber (n-NBR)/Epoxy 
Nanocomposites, Proceeding of the 1s International Conference on Rheology (ICOR 2019), Iran Polymer and Petrochemical Insitute, 17-18 December, 104-105, 2019.
31. Karami M.H. and Kalaee M.R., Modeling of Curing Kinetics of Epoxy Nanocomposites by Time Sweep Method, Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Insitute, 3 March, 234-241, 2019.
32. Karami M.H. and Kalaee M.R., Chemorheology of Epoxy Nanocomposites in the Presence of Elasomeric Nanoparticles, Proceeding of the National Conference on Advanced Technologies in Energy, Water and Environment, Sharif Energy Research Insitute, 3 March, 209-216, 2020
33. Karami M.H. and Kalaee M.R., A Review of the Applications 
of Cross-Linked Elasomeric Nanoparticles, Iran Rubb. Mag. 
(Persian), 25, 37-56, 2020.
34. Karami M.H. and Kalaee M.R., A Review of the Curing 
Kinetics of Epoxy Nanocomposites/Nanoclay,  Iran Polym. 
Technol. Res. Develop. (Persian),  6, 29-38, 2021.
35. Karami M.H. and Kalaee M.R., Review of Degradation 
Kinetics of Epoxy Nanocomposites in the Presence of Clay 
Nanoparticles,  Polymerization (Persian),  11, 65-76, 2021.
36. Karami M.H. and Kalaee M.R., Review of Curing Kinetics 
of Epoxy Nanocomposites in the Presence of Iron Oxide 
Nanoparticles,  Polymerization (Persian),  11, 34-43, 2021.
37. Karami M.H. and Kalaee M.R., Invesigation of the Efect of 
Carbon Nanotubes on Modeling of Curing Kinetics of Epoxy 
Resin, J. Sci. Eng. Elites (Persian), 6, 162-175, 2021.
38. Wang Q., Su S.H., and Wang D.Y., Carbon Nanotube/Epoxy 
Composites for Improved Fire Safety, ACS Appl. Nano Mater., 
3, 4253–4264, 2020.
39. Ali F., Ishfaq N., Said A., Nawaz Z., Ali Z., Ali N., Afzal 
A., and Muhammad Bilal M., Fabrication, Characterization, 
Morphological and Thermal Invesigations of Functionalized 
Multi-Walled Carbon Nanotubes Reinforced Epoxy 
Nanocomposites,  Prog.  Org.  Coat,  150,  105962,  2021.
40. Abdul Kudus M.H., Zakaria M.R., Omar M.F., Haf Othman 
M.B., Md. Akil H., Nabiałek M., Jeż B., and Al Bakri Abdullah 
M.M., Nonisothermal Kinetic Degradation of Hybrid CNT/
Alumina Epoxy Nanocomposites, Metals, 11, 657, 2021.
 41. Karami M.H., Kalaee M.R., Khajavi R., Moradi O., and 
Zaarei D., Efect of Vulcanized Elasomeric Nanoparticles 
on Thermal Stability and the Maximum Decomposition 
Temperatures of Epoxy Resin, Proceeding of the 17th National 
Chemical Engineering Congress & Exhibition (IChEC 2021), 
Ferdowsi University of Mashhad, 9-11 November, 2021.
42. Karami M.H., Kalaee M.R., Khajavi R., Moradi O., and Zaaei 
D., Viscosity Modeling of epoxy Nanocomposites/Elasomeric 
Nanoparticles,  Proceeding of the 17th National Chemical 
Engineering Congress & Exhibition (IChEC 2021), Ferdowsi 
University of Mashhad, 9-11 November, 2021.
43. Karami M.H., Kalaee M.R., Khajavi R., Moradi O., and 
Zaaei D., Thermal Stability and Thermal Degradation of 
Epoxy Nanocomposite in the Presence of Full Vulcanized 
Elasomeric Nanoparticles, Adv. Mater. Novel Coat. (Persian), 
10, 2758-2770, 2021